摘要:
A semiconductor wafer comprises a silicon substrate, and a dielectric layer. A gate is formed on the dielectric layer. A first silicon oxide layer is uniformly formed on the semiconductor wafer. A first ion implantation process is performed to form two doped areas on the silicon substrate that are used as two lightly doped drains of a MOS transistor. A second silicon oxide layer is formed on the semiconductor wafer. A sacrificial layer is formed on the second silicon oxide layer. A first etching process is performed to remove the sacrificial layer on top of the gate, causing the gate to protrude from the remaining sacrificial layer for a predetermined height. A second etching process is performed to remove the first and second silicon oxide layers on the protruding portion of the gate. After removing the sacrificial layer completely, a silicon nitride layer is uniformly formed on the semiconductor wafer. A third etching process is performed to vertically remove the silicon nitride layer on top of the gate, thereby forming a spacer. Finally, a second ion implantation process is performed to form two doped areas on the silicon substrate, which are used as source and drain of the MOS transistor.
摘要:
A method of relieving wafer stress is provided. A wafer is provided, wherein at least a dielectric layer has already formed over the wafer and the wafer has a first and a second area. At least no circuits are formed on the dielectric layer within the first area. Thereafter, openings are formed in the dielectric layer within the first area. A material layer is formed over the dielectric layer. Thus, pits are formed on the surface of the material layer at locations above the openings. Through the pits on the material layer, stress within the material layer is relieved and hence the amount of stress conferred to the wafer is reduced.
摘要:
A method for forming a semiconductor with overetched spacer is disclosed. The method includes firstly providing a semiconductor substrate with a gate oxide layer formed thereon, and forming a polysilicon layer on the gate oxide layer. Next, a photoresist layer is formed on the polysilicon layer to define a gate area, followed by anisotropically etching the polysilicon layer and the gate oxide layer. A first dielectric layer is conformably formed, and a second dielectric layer is then formed thereon. After anisotropically etching the second dielectric layer to form a first sidewall spacer on the sidewall of the first dielectric layer, a third dielectric layer is further formed over the exposed first dielectric layer and the first sidewall spacer. Finally, the third dielectric layer and the first sidewall spacer are anisotropically etched so that a second sidewall spacer is formed on the sidewall of the first sidewall spacer, wherein top surface of the first and the second sidewall spacer is below top surface of the first dielectric layer around the gate area.
摘要:
An electronic device having a touching function, including a touching region, a housing, a touch module, and a switch module is provided. The touching region is performing the touching function. The touching region is located over the housing. The touch module is disposed in the housing in correspondence with the touching region. The switch module includes at least one switch and is disposed under the touch module. The touch module is bent under force to turn on the switch when the touching region is touched.
摘要:
A method of forming an ultraviolet curable paint coating is provided. First, an ultraviolet curable paint composition is formed by mixing, based on 100 parts by weight of the ultraviolet curable paint composition, 1 to 10 parts by weight of a photo-initiator, 5 to 20 parts by weight of an organosilane compound, 5 to 30 parts by weight of a binding agent, 0.1 to 15 parts by weight of a catalyst, and an ultraviolet curable resin, wherein a number of the functional group of the binding agent is more than that of the organosilane compound. Thereafter, a sub coating is formed by using the ultraviolet curable paint composition, and an ultraviolet curable paint coating is then formed by contacting the sub coating with a paint, wherein the unreacted hydroxyls of the sub coating react with the paint to facilitate the paint to adhere to a surface of the sub coating.
摘要:
An integrated circuit layout includes dense figures and at least one isolated figure. A plurality of dummy patterns are formed to surround the isolated figure, so as to reduce the difference in pattern density of the integrated circuit layout. A transmitted light of the dummy patterns provides a phase difference of 0 or 180 degrees relative to a transmitted light of the integrated circuit layout. The integrated circuit layout and the plurality of dummy patterns are formed on a photo-mask.
摘要:
An integrated circuit layout includes dense figures and at least one isolated figure. A plurality of dummy patterns are formed to surround the isolated figure, so as to reduce the difference in pattern density of the integrated circuit layout. A transmitted light of the dummy patterns provides a phase difference of 0 or 180 degrees relative to a transmitted light of the integrated circuit layout. The integrated circuit layout and the plurality of dummy patterns are formed on a photo-mask.
摘要:
A method for forming a plane structure. It comprises the following steps: forms a liquid material with a thicker thickness on a substrate, rotating both the liquid material and the substrate around the axis of the substrate, applying a solvent on the rotating liquid material to remove partial liquid material. It also comprises the following steps: form a thicker removable material on a substrate, and partially remove the surface part of the removable material.
摘要:
A method of forming a dual damascene structure. A first dielectric layer and a second dielectric layer are sequentially formed over a substrate. A first photoresist layer is formed over the second dielectric layer. Photolithographic and etching operations are conducted to remove a portion of the second dielectric layer and the first dielectric layer so that a via opening is formed. A conformal third dielectric layer is coated over the surface of the second dielectric layer and the interior surface of the via opening. The conformal third dielectric layer forms a liner dielectric layer. A second photoresist layer is formed over the second dielectric layer and then the second photoresist layer is patterned. Using the patterned second photoresist layer as a mask, a portion of the second dielectric layer is removed to form a trench. The patterned second photoresist layer is removed. Conductive material is deposited over the substrate to fill the via opening and the trench. Finally, chemical-mechanical polishing is conducted to remove excess conductive material above the second dielectric layer.
摘要:
A composite photoresist structure includes a first organic layer disposed over a substrate to be etched, a sacrificial layer disposed on the first organic layer, and a second organic layer disposed on the sacrificial layer. The thickness of the first organic layer and the thickness of the second organic layer are both larger than the thickness of the sacrificial layer.