Abstract:
A stacked chip system is provided to comprise a first chip, a second chip, a first group of through silicon vias (TSVs) connecting the first chip and second chip and comprising at least one first VSS TSV, at least one first VDD TSV, a plurality of first signal TSVs and at least one first redundant TSV and a second group of through silicon vias (TSVs) connecting the first chip and second chip and comprising at least one second VSS TSV, at least one second VDD TSV, a plurality of second signal TSVs and at least one second redundant TSV, wherein all the first group of TSVs are coupled by a first selection circuitry configured to select the at least one first redundant TSV and bypass at least one of the rest of the first group of TSVs, and wherein the at least one first redundant TSV and the at least second redundant TSV are coupled by a second selection circuitry configured to allow one of them to replace the other.
Abstract:
A semiconductor device comprises a substrate having a first side with a first surface and a second side with a second surface, a recessed through silicon via (TSV) penetrating the substrate and forming a first step height with respect to the first surface of the first side, a first extruded backside redistribution line (RDL) filling in the first step height and engaging with the recessed through silicon via.
Abstract:
A light sensing element having two functions is provided for a high-speed image scanning system to scan a document, including a set of matrix light-sensing cells for detecting a scanning location for the scanned document, thereby feeding the sensed signals to control the scanning location and scanning speed, and at least one set of trilinear light-sensing cells for sensing an document, thereby acquiring image signals.
Abstract:
An air gap structure and formation method for substantially reducing the undesired capacitance between adjacent interconnects, metal lines or other features in an integrated circuit device is disclosed. The air gap extends above, and may also additionally extend below, the interconnects desired to be isolated thus minimizing fringing fields between the lines. The integrated air gap structure and formation method can be utilized in conjunction with either damascene or conventional integrated circuit metallization schemes. Also, multiple levels of the integrated air gap structure can be fabricated to accommodate multiple metal levels while always ensuring that physical dielectric layer support is provided to the device structure underlying the interconnects.
Abstract:
A light sensing element having two functions is provided for a high-speed image scanning system to scan a document, including a set of matrix light-sensing cells for detecting a scanning location for the scanned document, thereby feeding the sensed signals to control the scanning location and scanning speed, and at least one set of trilinear light-sensing cells for sensing an document, thereby acquiring image signals.
Abstract:
A gate oxide layer and a gate are sequentially formed on a substrate, and a source/drain extension is formed in the substrate thereafter. A liner layer is then formed to cover the substrate, and a first dielectric layer and a second dielectric layer are sequentially formed on the liner layer. By performing an etching process, a L-shaped spacer is formed on either side of the gate. Portions of the liner layer uncovered by the L-shaped spacer are then removed, and a step source/drain extension and a source/drain are simultaneously formed in the substrate thereafter. Finally, a salicide process is performed to form a silicide layer on the gate and on portions of the silicon substrate surface above the source/drain.
Abstract:
A method is given to form a thin film on a surface of a semiconductor wafer. The surface has at least a first region, containing an inner portion of the wafer, and a second region, containing an outer portion of the wafer, and slopes outward from the first region to the second region. The method starts with performing an in-situ inert gas plasma treatment on the surface of the semiconductor wafer to generate different temperatures from the first region to the second region. Different deposition rates of a precursor A from the first region to the second region are thus generated so as to form a flat surface. Then a precursor A-chemical vapor deposition (CVD) process is performed to form the thin film with the flat surface immediately after performing the inert gas plasma treatment.
Abstract:
A method of filling a gap is proposed. The method of the invention is applied on a substrate which has conductive structures formed thereon. A HDPCVD is performed to form a dielectric layer on the substrate. The HDPCVD process comprises multi-steps. In a first step, a gas source is added to a deposition chamber to form dielectric material over the substrate. The gas source comprises reactive gas and inert gas. Thus, the first step can simultaneously perform deposition and sputtering. In a second step, the reactive gas is driven out of the deposition chamber. Only sputtering is used to remove a part of the dielectric material at top corners of the conductive structures. In a third step, the reactive gas is again added into the deposition chamber to deposit the dielectric material until filling the gap.
Abstract:
A fabrication method for an inter-metal dielectric layer is applicable to multi-level interconnects. A substrate is provided with metal lines formed thereon. A first (fluorinated silicon glass) FSG layer with low fluorine content is then formed on the substrate, followed by forming a biased-clamped FSG layer on the first FSG layer. A second FSG layer with low fluorine content is formed on the biased-clamped layer, prior to forming an oxide cap layer on the second FSG layer. The oxide cap layer is planarized until the oxide cap layer is level with the second FSG layer.
Abstract:
A method for improving non-uniformity of chemical mechanical polishing by over coating layer is disclosed. The essential point of the invention is that an over coating layer is formed over a surface before the surface is planarized by a chemical mechanical polishing process. Note that polishing rate of the over coating layer must be less than the polishing rate of the surface, where the ratio of polishing rate is called as selectivity. Because the topography of the surface is not uniform, the topography of the over coating layer also is non-uniform and then the polishing probability in different parts of the over coating layer is different. Obviously, when the over coating layer on the higher area part of the surface is totally consumed, these are residual over coating layer on the lower area part of the surface. Thus, over polishing in the lower area part is prevented by residual over coating layer. Before total over coating layer is polished, the polished account of the surface is higher in the high area part and is lower in the lower area part. Thus, uniformity of the surface is enhanced. Moreover, enhancement of uniformity is direct proportional to product of selectivity and depth of over coating layer.