摘要:
A method of manufacturing a vertical memory device includes forming alternating and repeating insulating interlayers and sacrificial layers on a substrate, the sacrificial layers including polysilicon or amorphous silicon, forming channel holes through the insulating interlayers and the sacrificial layers, forming channels in the channel holes, etching portions of the insulating interlayers and the sacrificial layers between adjacent channels to form openings, removing the sacrificial layers to form gaps between the insulating interlayers, and forming gate lines in the gaps.
摘要:
A vertical memory device includes a channel array, a charge storage layer structure, multiple gate electrodes and a dummy pattern array. The channel array includes multiple channels, each of which is formed on a first region of a substrate and is formed to extend in a first direction substantially perpendicular to a top surface of the substrate. The charge storage layer structure includes a tunnel insulation layer pattern, a charge storage layer pattern and a blocking layer pattern, which are sequentially formed on a sidewall of each channel in the second direction substantially parallel to the top surface of the substrate. The gate electrodes arranged on a sidewall of the charge storage layer structure and spaced apart from each other in the first direction. The dummy pattern array includes multiple dummy patterns, each of which is formed on a second region adjacent the first region of the substrate and is formed to extend in the first direction.
摘要:
Tunnel insulation layer structures and methods of manufacturing the same are disclosed. The tunnel insulation layer structures may include a first tunnel insulation layer, a second tunnel insulation layer, a third tunnel insulation layer, a fourth tunnel insulation layer and a fifth tunnel insulation layer. The first tunnel insulation layer on a substrate has a first band gap energy. The second tunnel insulation layer on the first tunnel insulation layer has a second band gap energy which is lower than the first band gap energy. The third tunnel insulation layer on the second tunnel insulation layer has a third band gap energy which is higher than the second band gap energy. The fourth tunnel insulation layer on the third tunnel insulation layer has a fourth band gap energy which is lower than the third band gap energy. The fifth tunnel insulation layer on the fourth tunnel insulation layer has a fifth band gap energy which is higher than the fourth band gap energy.
摘要:
In an embodiment, a method of manufacturing a charge-trapping dielectric and a silicon-oxide-nitride-oxide-silicon (SONOS)-type non-volatile semiconductor device includes forming the charge-trapping dielectric, and a first oxide layer including silicon oxide. A silicon nitride layer including silicon-rich nitride is formed by a cyclic chemical vapor deposition (CVD) process using a silicon source material and a nitrogen source gas. A second oxide layer is formed on the silicon nitride layer. Hence, the charge-trapping dielectric having good erase characteristics is formed. In the SONOS-type non-volatile semiconductor device including the charge-trapping dielectric, a data erase process may be stably performed.
摘要:
A vertical memory device including a substrate including first regions and a second region; a plurality of channels in the first regions, the plurality of channels extending in a first direction substantially perpendicular to a top surface of the substrate; a charge storage structure on a sidewall of each channel in a second direction substantially parallel to the top surface of the substrate; a plurality of gate electrodes in the first regions, the plurality of gate electrodes arranged on a sidewall of the charge storage structure and spaced apart from each other in the first direction; and a plurality of supporters in the second region, the plurality of supporters spaced apart from each other in a third direction substantially perpendicular to the first direction and the second direction, the plurality of supporters contacting a sidewall of at least one gate electrode.
摘要:
In a method for manufacturing a semiconductor device, a silicon oxide layer is formed on a substrate. The silicon oxide layer is treated with a solution comprising ozone. Then, a conductive layer is formed on the silicon oxide layer treated with the solution.
摘要:
A method of forming a vapor thin film is provided, which includes loading a substrate into a chamber, adsorbing a source gas on the substrate by supplying the source gas into the chamber, and forming the thin film on the substrate by supplying a reaction gas into the chamber, wherein the forming of the thin film on the substrate is proceeded under an electric field formed in one direction on the substrate by applying a bias to the substrate.
摘要:
According to example embodiments of inventive concepts, a method of fabricating a semiconductor device includes: forming a preliminary stack structure, the preliminary stack structure defining a through hole; forming a protection layer and a dielectric layer in the through hole; forming a channel pattern, a gapfill pattern, and a contact pattern in the through hole; forming an offset oxide on the preliminary stack structure; measuring thickness data of the offset oxide; and scanning the offset oxide using a reactive gas cluster ion beam. The scanning the offset oxide includes setting a scan speed based on the measured thickness data of the offset oxide, and forming a gas cluster.
摘要:
A gas injector may comprise: a gas introduction tube configured to introduce reaction gas into a reaction tube from a gas supply source; and/or a gas distributor connected to the gas introduction tube, extending from the gas introduction tube in a direction within the reaction tube, including a plurality of ejection holes in an inner surface of the gas distributor, and having an arc shape extending in a circumferential direction of the reaction tube. The ejection holes may be spaced apart from each other in the extending direction of the gas distributor, and are configured to spray the reaction gas.
摘要:
A vertical memory device includes a first structure having a lower semiconductor pattern structure filling a recess on a substrate and protruding from an upper surface of the substrate in a first direction substantially perpendicular to the upper surface of the substrate, the lower semiconductor pattern structure including a first undoped semiconductor pattern, a doped semiconductor pattern, and a second undoped semiconductor pattern sequentially stacked, and a lower surface of the doped semiconductor pattern being lower than the upper surface of the substrate, and an upper semiconductor pattern extending in the first direction on the lower semiconductor pattern structure, and a plurality of gate electrodes surrounding a sidewall of the first structure, the plurality of gate electrodes being at a plurality of levels, respectively, so as to be spaced apart from each other in the first direction.