Abstract:
One or more embodiments relate to a method of forming a semiconductor structure, comprising: providing a workpiece; forming a barrier layer over the workpiece; forming a seed layer over the barrier layer; forming an inhibitor layer over the seed layer; removing a portion of said inhibitor layer to expose a portion of the seed layer; and selectively depositing a fill layer on the exposed seed layer.
Abstract:
An electrolyte may be provided. The electrolyte may include at least one additive configured to decompose or evaporate at a temperature above approximately 100° C., and a water soluble metal salt, and the electrolyte may be free from carbon nanotubes. In various embodiments, a method of forming a metal layer may be provided: The method may include depositing a metal layer on a carrier using an electrolyte, wherein the electrolyte may include at least one additive configured to decompose or evaporate at a temperature above approximately 100° C. and a water soluble metal salt, wherein the electrolyte is free from carbon nanotubes; and annealing the metal layer to form a metal layer comprising a plurality of pores. In various embodiments, a semiconductor device may be provided. The semiconductor device may include a metal layer including a plurality of pores, wherein the plurality of pores may be formed in the metal layer as remnants of an additive having resided in the plurality of pores and having at least partially decomposed or evaporated. To keep a high elasticity over a wide temperature range (up to 450° C.), an adhesion layer may stabilize the metal grain boundaries and may fix dislocation gliding inside metal grains. In various embodiments, a metal layer is provided. The metal layer may include a plurality of pores having ellipsoidal or spheroidal shape.
Abstract:
A layered structure includes a silicon-based substrate comprising a substrate surface; a titanium-copper seed layer arranged on the substrate surface, wherein the titanium-copper seed layer comprises a titanium layer and a copper layer, wherein the titanium layer is arranged on the substrate surface such that covalent bonds are formed between the titanium layer and silicon of the silicon-based substrate, and wherein the copper layer is arranged directly on the titanium layer, such that the titanium layer is arranged between the substrate surface and the copper layer; and a nickel-iron plating layer arranged directly on the copper layer of the titanium-copper seed layer such that the titanium-copper seed layer is arranged between the silicon-based substrate and the nickel-iron plating layer.
Abstract:
A semiconductor device includes a semiconductor chip, an electrical connection element for electrically connecting the semiconductor device to a carrier, and a metallization adjoining the electrical connection element, the metallization contains porous nanocrystalline copper that contains portions of organic acids.
Abstract:
One or more embodiments relate to a semiconductor structure, comprising: a barrier layer overlying a workpiece surface; a seed layer overlying the barrier layer; an inhibitor layer overlying said seed layer, the inhibitor layer having a opening exposing a portion of the seed layer, and a fill layer overlying the exposed portion of the seed layer.