摘要:
A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
摘要:
A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
摘要:
A semiconductor device having a first load terminal, a second load terminal and a semiconductor body is presented. The semiconductor body comprises an active region configured to conduct a load current between the first load terminal and the second load terminal and a junction termination region surrounding the active region. The semiconductor body includes a drift layer arranged within both the active region and the junction termination region and having dopants of a first conductivity type at a drift layer dopant concentration of equal to or less than 1014 cm−3; a body zone arranged in the active region and having dopants of a second conductivity type complementary to the first conductivity type and isolating the drift layer from the first load terminal; a guard zone arranged in the junction termination region and having dopants of the second conductivity type and being configured to extend a depletion region formed by a transition between the drift layer and the body zone; a field stop zone arranged adjacent to the guard zone, the field stop zone having dopants of the first conductivity type at a field stop zone dopant concentration that is higher than the drift layer dopant concentration by a factor of at least 2; a low doped zone arranged adjacent to the field stop zone, the low doped zone having dopants of the first conductivity type at a dopant concentration that is lower than the drift layer dopant concentration by a factor of at least 1.5, wherein the body zone, the guard zone, the field stop zone and the low doped zone are arranged in the semiconductor body such that they exhibit a common depth range (DR) of at least 1 μm along a vertical extension direction (Z).
摘要:
A semiconductor device having a first load terminal, a second load terminal and a semiconductor body is presented. The semiconductor body comprises an active region configured to conduct a load current between the first load terminal and the second load terminal and a junction termination region surrounding the active region. The semiconductor body includes a drift layer arranged within both the active region and the junction termination region and having dopants of a first conductivity type at a drift layer dopant concentration of equal to or less than 1014 cm−3; a body zone arranged in the active region and having dopants of a second conductivity type complementary to the first conductivity type and isolating the drift layer from the first load terminal; a guard zone arranged in the junction termination region and having dopants of the second conductivity type and being configured to extend a depletion region formed by a transition between the drift layer and the body zone; a field stop zone arranged adjacent to the guard zone, the field stop zone having dopants of the first conductivity type at a field stop zone dopant concentration that is higher than the drift layer dopant concentration by a factor of at least 2; a low doped zone arranged adjacent to the field stop zone, the low doped zone having dopants of the first conductivity type at a dopant concentration that is lower than the drift layer dopant concentration by a factor of at least 1.5, wherein the body zone, the guard zone, the field stop zone and the low doped zone are arranged in the semiconductor body such that they exhibit a common depth range (DR) of at least 1 μm along a vertical extension direction (Z).
摘要:
A semiconductor device has a semiconductor body with a first side and a second side that is arranged distant from the first side in a first vertical direction. The semiconductor device has a rectifying junction, a field stop zone of a first conduction type, and a drift zone of a first conduction type arranged between the rectifying junction and the field stop zone. The semiconductor body has a net doping concentration along a line parallel to the first vertical direction. At least one of (a) and (b) applies: (a) the drift zone has, at a first depth, a charge centroid, wherein a distance between the rectifying junction and the charge centroid is less than 37% of the thickness the drift zone has in the first vertical direction; (b) the absolute value of the net doping concentration comprises, along the straight line and inside the drift zone, a local maximum value.
摘要:
A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
摘要:
A channel stopper region extending from a first main surface into a component layer of a first conductivity type is formed in an edge region of a component region, the edge region being adjacent to a sawing track region. Afterward, a doped region extending from the first main surface into the component layer is formed in the component region. The channel stopper region is formed by a photolithographic method that is carried out before a first photolithographic method for introducing dopants into a section of the component region outside the channel stopper region.
摘要:
A vertical semiconductor device comprises a substrate having a front surface and a back surface, an active area (AA) located in the substrate, having a drift region doped with a first dopant type, an edge termination region (ER) laterally surrounding the active area (AA), a channelstopper terminal provided at the front surface and located in the edge termination region (ER), and a first suppression trench located on a side of the channelstopper terminal towards the active region (AA), and provided adjacent to the channelstopper terminal. Further, a production method for such a semiconductor device is provided.
摘要:
A method of manufacturing a semiconductor device includes forming a frame trench extending from a first surface into a base substrate, forming, in the frame trench, an edge termination structure comprising a glass structure, forming a conductive layer on the semiconductor substrate and the edge termination structure, and removing a portion of the conductive layer above the edge termination structure. A remnant portion of the conductive layer forms a conductive structure that covers a portion of the edge termination structure directly adjoining a sidewall of the frame trench.
摘要:
A semiconductor device has a semiconductor body with bottom and top sides and a lateral surface. An active semiconductor region is formed in the semiconductor body and an edge region surrounds the active semiconductor region. A first semiconductor zone of a first conduction type is formed in the edge region. An edge termination structure having at least N field limiting structures is formed in the edge region. Each of the field limiting structures has a field ring and a separation trench formed in the semiconductor body, where N is at least 1. Each of the field rings has a second conduction type, forms a pn-junction with the first semiconductor zone and surrounds the active semiconductor region. For each of the field limiting structures, the separation trench of that field limiting structure is arranged between the field ring of that field limiting structure and the active semiconductor region.