Abstract:
A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
Abstract:
Methods of forming fins include forming mask fins on a protection layer over a seed layer. Seed layer fins are etched out of the seed layer. Self-assembled fins are formed by directed self-assembly on the seed layer fins. A three-color hardmask fin pattern that has hardmask fins of three mutually selectively etchable compositions is formed using the self-assembled fins as a mask. A region on the three-color hardmask fin pattern is masked, leaving one or more fins of a first color exposed. All exposed fins of the first color are etched away with a selective etch that does not remove fins of a second color or a third color. The mask and all fins of a second color are etched away. Fins are etched into the fin base layer by anisotropically etching around remaining fins of the first color and fins of the third color.
Abstract:
A method for forming fins includes forming a three-color hardmask fin pattern on a fin base layer. The three-color hardmask fin pattern has hardmask fins of three mutually selectively etchable compositions. A region on the three-color hardmask fin pattern is masked, leaving one or more fins of a first color exposed. All exposed fins of the first color are etched away with a selective etch that does not remove fins of a second color or a third color. The mask and all fins of a second color are etched away. Fins are etched into the fin base layer by anisotropically etching around remaining fins of the first color and fins of the third color.
Abstract:
Cut spacer reference marks, targets having such cut spacer reference marks, and methods of making the same by forming spacer gratings around grating lines on a first layer, and fabricating an angled template mask that extends across and resides at an angle with respect to such spacer gratings. Angled, cut spacer gratings are etched into a second layer using the angled template mask to superimpose at least a portion of the spacer gratings of the first layer into the second layer.
Abstract:
A wafer includes an active region and a kerf region surrounding at least a portion of the active region. The wafer also includes a target region having a rectangular shape with a width and length greater than the width, the target region including one or more target patterns, at least one of the target patterns being formed by two sub-patterns disposed at opposing corners of target rectangle disposable within the target region.
Abstract:
A method for forming fins includes forming a three-color hardmask fin pattern on a fin base layer. The three-color hardmask fin pattern has hardmask fins of three mutually selectively etchable compositions. A region on the three-color hardmask fin pattern is masked, leaving one or more fins of a first color exposed. All exposed fins of the first color are etched away with a selective etch that does not remove fins of a second color or a third color. The mask and all fins of a second color are etched away. Fins are etched into the fin base layer by anisotropically etching around remaining fins of the first color and fins of the third color.
Abstract:
A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
Abstract:
A method for forming conductive lines on a wafer comprises forming a first hardmask, a planarizing layer, a second hardmask, a layer of sacrificial mandrel material on the second hardmask, and patterning a mask on the layer of sacrificial material. A first sacrificial mandrel and a second sacrificial mandrel and a gap are formed. A layer of spacer material is deposited in the gap. Portions of the first sacrificial mandrel and the second sacrificial mandrel are removed, and exposed portions of the second hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. The second hardmask, the spacers, and the planarizing layer are removed. Exposed portions of the insulator layer are removed to form a trench in the insulator layer, and the trench is filled with a conductive material.
Abstract:
A method of forming a self-aligned pattern of vias in a semiconductor device comprises forming a first layer of mandrels, then forming a second layer of mandrels orthogonal to the first layer of mandrels. The layout of the first and second layers of mandrels defines a pattern that can be used to create vias in a semiconductor material. Other embodiments are also described.
Abstract:
An organic planarization layer (OPL) is formed above a functional layer located on a substrate. A titanium-oxide layer is formed above the OPL, wherein forming the titanium-oxide layer comprises titanium, oxide, carbon, and nitrogen. A photoresist layer is patterned above a first portion of the titanium-oxide layer. A second portion of the titanium-oxide layer is removed using a wet stripping technique. The photoresist layer and the OPL are removed using a dry etch technique, wherein the first portion of the titanium-oxide layer remains over a remaining portion of the OPL. The first portion of the titanium-oxide layer and the functional layer are removed using the wet stripping technique. The remaining portion of the OPL is removed using a dry stripping technique.