Electron beam apparatus
    4.
    发明授权

    公开(公告)号:US11784022B2

    公开(公告)日:2023-10-10

    申请号:US17425872

    申请日:2019-01-28

    Abstract: A scanning electron beam apparatus which two-dimensionally scans a sample by an electron beam to achieve high resolution even with a photoexcited electron source. The electron beam apparatus includes a photocathode including a substrate having a refractive index of more than 1.7 and a photoemissive film, a focusing lens configured to focus an excitation light toward the photocathode, an extractor electrode disposed facing the photocathode and configured to accelerate an electron beam generated from the photoemissive film by focusing the excitation light by the focusing lens and emitting the excitation light through the substrate, and an electron optics including a deflector configured to two-dimensionally scan a sample by the electron beam accelerated by the extractor electrode. For a spherical aberration of the focusing lens, a root mean square of the spherical aberration on the photoemissive film is equal to or less than 1/14 of a wavelength of the excitation light.

    ELECTRON BEAM APPARATUS
    5.
    发明申请

    公开(公告)号:US20220165536A1

    公开(公告)日:2022-05-26

    申请号:US17425872

    申请日:2019-01-28

    Abstract: A scanning electron beam apparatus which two-dimensionally scans a sample by an electron beam, to achieve high resolution even with a photoexcited electron source. The electron beam apparatus includes a photocathode including a substrate having a refractive index of more than 1.7 and a photoemissive film, a focusing lens configured to focus an excitation light toward the photocathode, an extractor electrode disposed facing the photocathode and configured to accelerate an electron beam generated from the photoemissive film by focusing the excitation light by the focusing lens and emitting the excitation light through the substrate, and an electron optics including a deflector configured to two-dimensionally scan a sample by the electron beam accelerated by the extractor electrode. For a spherical aberration of the focusing lens, a root mean square of the spherical aberration on the photoemissive film is equal to or less than 1/14 of a wavelength of the excitation light.

    Charged particle beam device
    6.
    发明授权

    公开(公告)号:US10886101B2

    公开(公告)日:2021-01-05

    申请号:US16494595

    申请日:2017-03-29

    Abstract: A charged particle beam device includes: a charged particle source that emits a charged particle beam; a boosting electrode disposed between the charged particle source and a sample to form a path of the charged particle beam and to accelerate and decelerate the charged particle beam; a first pole piece that covers the boosting electrode; a second pole piece that covers the first pole piece; a first lens coil disposed outside the first pole piece and inside the second pole piece to form a first lens; a second lens coil disposed outside the second pole piece to form a second lens; and a control electrode formed between a distal end portion of the first pole piece and a distal end portion of the second pole piece to control an electric field formed between the sample and the distal end portion of the second pole piece.

    Charged particle beam device
    7.
    发明授权

    公开(公告)号:US11335532B2

    公开(公告)日:2022-05-17

    申请号:US17043560

    申请日:2018-03-29

    Abstract: As a device for correcting positive spherical aberration of an electromagnetic lens for a charged particle beam, a spherical aberration correction device combining a hole electrode and a ring electrode is known. In this spherical aberration correction device, when a voltage is applied between the hole electrode and the ring electrode, the focus of the charged particle beam device changes due to the convex lens effect generated in the hole electrode. Therefore, in a charged particle beam device including a charged particle beam source which generates a charged particle beam, a charged particle beam aperture having a ring shape, and a charged particle beam aperture power supply which applies a voltage to the charged particle beam aperture, the charged particle beam aperture power supply is configured to apply, to the charged particle beam aperture, a voltage having a polarity opposite to a polarity of charges of the charged particle beam.

    Charged particle beam device
    8.
    发明授权

    公开(公告)号:US11164716B2

    公开(公告)日:2021-11-02

    申请号:US17040121

    申请日:2018-03-29

    Abstract: When using a charged particle beam aperture having a ring shape in a charged particle beam device, the charged particle beam with the highest current density immediately above the optical axis, among the charged particle beams is blocked, so that it is difficult to dispose the charged particle beam aperture at the optimal mounting position. Therefore, in addition to the ring-shaped charged particle beam aperture, a hole-shaped charged particle beam aperture is provided, and it is possible to switch between the case where the ring-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam and the case where the hole-shaped charged particle beam aperture is disposed on the optical axis of the charged particle beam.

    Particle measuring device and particle measuring method

    公开(公告)号:US11143606B2

    公开(公告)日:2021-10-12

    申请号:US16965228

    申请日:2018-02-01

    Abstract: To enable evaluation of a shape of a fine particle and a fine particle type, a substrate is set as a substrate on which an isolated fine particle to be measured and an isolated standard fine particle in the vicinity of the isolated fine particle to be measured are disposed, and a scanning electron microscope body including a detector configured to detect secondary charged particles obtained by scanning a surface of the substrate with an electron beam probe, and a computer that processes a detection signal and generates an image of the isolated fine particle to be measured and the isolated standard fine particle are provided. The computer corrects a shape of the isolated fine particle to be measured by using a measurement result of the isolated standard fine particle disposed in the vicinity of the isolated fine particle to be measured. Further, by attaching a fine particle spreading tank equipped with a fine particle suspension dropping device inside the microscope body, automatic measurement including dropping of fine particle suspension onto a surface of a surface-modified substrate is possible.

Patent Agency Ranking