摘要:
Structures and methods are presented relating to formation of finFET semiconducting devices. A finFET device is presented comprising fin(s) formed on a substrate, wherein the fin(s) has a needle-shaped profile. The needle-shaped profile, in conjunction with at least a buffer layer or a doped layer, epitaxially formed on the fin(s), facilitates strain to be induced into the fin(s) by the buffer layer or the doped layer. The fin(s) can comprise silicon aligned on a first plane, while at least one of the buffer layer or the doped layer are grown on a second plane, the alignment of the first and second planes are disparate and are selected such that formation of the buffer layer or the doped layer generates a stress in the fin(s). The generated stress results in a strain being induced into the fin(s) channel region, which can improve electron and/or hole mobility in the channel.
摘要:
Structures and methods are presented relating to formation of finFET semiconducting devices. A finFET device is presented comprising fin(s) formed on a substrate, wherein the fin(s) has a needle-shaped profile. The needle-shaped profile, in conjunction with at least a buffer layer or a doped layer, epitaxially formed on the fin(s), facilitates strain to be induced into the fin(s) by the buffer layer or the doped layer. The fin(s) can comprise silicon aligned on a first plane, while at least one of the buffer layer or the doped layer are grown on a second plane, the alignment of the first and second planes are disparate and are selected such that formation of the buffer layer or the doped layer generates a stress in the fin(s). The generated stress results in a strain being induced into the fin(s) channel region, which can improve electron and/or hole mobility in the channel.
摘要:
Methods and structure are provided to facilitate isolation of respective ground plane regions in an SOTB semiconductor device. In one aspect a shallow STI trench can be combined with Si:C or Si:C/SiGe layers to confine n-type and p-type regions. In a further aspect, Ge can be implanted at the bottom of a shallow STI trench and subsequently oxidized to form SiGe oxide thereby extending the effective isolation provided by the shallow STI trench. In an aspect, a shallow STI trench can be extended to expose an underlying layer of SiGe, wherein the SiGe is subsequently oxidized to extending the effective isolation provide by the shallow STI trench. Such aspects enable a shallow STI trench to be seamlessly filled while having an extended region of isolation.
摘要:
A field effect transistor according to one embodiment of the present invention is a field effect transistor which is supposed to be operated under a temperature condition at 300 K or less, comprising: an n-channel field effect transistor having a gate electrode formed by a gate electrode material having a work function WFn of less than 4.05. A field effect transistor according to one embodiment of the present invention is a field effect transistor which is supposed to be operated under a temperature condition at 300 K or less, comprising: a p-channel field effect transistor having a gate electrode formed by a gate electrode material having a work function WFp of more than 5.17.
摘要:
Provided is a semiconductor device, comprising a gate electrode formed on a semiconductor substrate, source/drain diffusion layers formed on both sides of the gate electrode, a gate electrode side-wall on the side of the source/drain diffusion layer and a gate side-wall insulating film covering a part of the upper surface of the semiconductor substrate in the vicinity of the gate electrode and having an L-shaped/reversed L-shaped cross-sectional shape, and a semiconductor layer extending over the gate side-wall insulating film covering a part of the upper surface of the semiconductor substrate in the vicinity of the gate electrode.
摘要:
An aspect of the present invention includes a first MOSFET having a first gate electrode formed on a first semiconductor layer in a first region of a semiconductor substrate, a first channel region formed immediately below the first gate electrode in the first semiconductor layer, a first diffusion layer constituting source/drain regions formed at both the sides of the first channel region in the first semiconductor layer, a first epitaxial layer formed on the first diffusion layer, and a first silicide layer formed on the first epitaxial layer, and a second MOSFET having a second gate electrode formed on a second semiconductor layer in a second region of the semiconductor substrate, a second channel region formed immediately below the second gate electrode in the second semiconductor layer, a second diffusion layer constituting source/drain regions formed at both the sides of the second channel region in the second semiconductor layer, and a second silicide layer formed on the second diffusion layer.
摘要:
An aspect of the present invention includes a first MOSFET having a first gate electrode formed on a first semiconductor layer in a first region of a semiconductor substrate, a first channel region formed immediately below the first gate electrode in the first semiconductor layer, a first diffusion layer constituting source/drain regions formed at both the sides of the first channel region in the first semiconductor layer, a first epitaxial layer formed on the first diffusion layer, and a first silicide layer formed on the first epitaxial layer, and a second MOSFET having a second gate electrode formed on a second semiconductor layer in a second region of the semiconductor substrate, a second channel region formed immediately below the second gate electrode in the second semiconductor layer, a second diffusion layer constituting source/drain regions formed at both the sides of the second channel region in the second semiconductor layer, and a second silicide layer formed on the second diffusion layer.
摘要:
On the surface of a hydrogen-terminated diamond 1 formed by terminating a surface 2 of either a homoepitaxial diamond or a heteroepitaxial diamond or a surface-flattened polycrystal diamond are formed a drain-ohmic contact 4 and a source-ohmic contact 3 of gold or platinum, an insulating layer 5 formed of silicon oxide (SiO.sub.x : 1.ltoreq.X.ltoreq.2) and a gate electrode 6 mounted on said insulating layer, and the surface other than the element forming region is set to be an insulating region being non-hydrogen-terminated, for example, oxygen-terminated, and the elements formed on said region is being isolated.
摘要:
Structures and methods are presented relating to formation of finFET semiconducting devices. An approach is presented to facilitate formation of a pMOS finFET which can be combined with a nMOS finFET to form a balanced CMOS device. A Si:C layer can be utilized to suppress diffusion of group III and group V impurities, where suppression can utilize interstitial and substitutional phases. A Si:Ge layer can be utilized to facilitate determination of transition between a Si layer and a Si:C layer to enable a finFET to be formed having a required volume of fin material exposed for anticipated operation (e.g., a target Vth) of the finFET device.
摘要:
A semiconductor device according to one embodiment includes: a semiconductor layer formed on a semiconductor substrate; a gate electrode formed on the semiconductor layer via a gate insulating film; an impurity diffusion suppression layer formed between the semiconductor substrate and the semiconductor layer and including a C-containing Si-based crystal containing a first impurity, the C-containing Si-based crystal being configured to suppress diffusion of a second impurity having a p-type conductivity type, and the C-containing Si-based crystal with the first impurity having a function of suppressing generation of fixed charge in the C-containing Si-based crystal; and p-type source/drain regions formed in the semiconductor substrate, the impurity diffusion suppression layer and the semiconductor layer in sides of the gate electrode, the p-type source/drain region having an extension region in the semiconductor layer and containing the second impurity.