Abstract:
Disclosed herein is a wireless transmission system, including: a plurality of systems of millimeter wave signal transmission lines capable of individually transmitting information in a millimeter waveband independently of each other; a sending section disposed on one end side of each of the plural systems of millimeter wave signal transmission lines; and a reception section disposed on the other end side of each of the plural systems of millimeter wave signal transmission lines. The sending section is adapted to convert a signal of an object of transmission into a millimeter wave signal and supply the millimeter wave signal to the millimeter signal transmission line. The reception section is adapted to receive the millimeter wave signal transmitted thereto through the millimeter wave signal transmission line and convert the received millimeter wave signal into the signal of the object of transmission.
Abstract:
Signal distribution, signal switching, and signal collection are performed with a simple configuration. An electronic device comprises a transmission unit (108) for transmitting, as a wireless signal, a signal to be transmitted and a reception unit (208) for receiving the wireless signal transmitted from the transmission unit. In the electronic device, a plurality of pairs of wireless signal transmission points in the transmission unit and wireless signal reception points in the reception unit can be formed. Using the pairs of transmission points and reception points make it possible to execute at least either one of signal distribution in which the same signal to be transmitted from a transmission point is transmitted to the multiple reception points and signal switching in which a signal to be transmitted from a transmission point is selectively transmitted to any of the multiple reception points. The signal to be transmitted is transmitted as a wireless signal. In this case, the signal distribution, signal switching, and signal collection are performed in a wireless signal portion. Since a portion where a signal transmission is performed through electric wiring does not interpose the portion where the signal distribution, signal switching, and signal collection are performed, the signal distribution, signal switching, and signal collection can be performed with a simple configuration.
Abstract:
Provided is an in-millimeter wave dielectric transmission device including a first signal processing board for processing a millimeter wave signal, a second signal processing board signal-coupled to the first signal processing board to receive the millimeter wave signal and perform signal processing with respect to the millimeter wave signal, and a viscoelastic member provided between the first signal processing board and the second signal processing board and having a predetermined relative dielectric constant and a predetermined dielectric dissipation factor. The viscoelastic member constitutes a dielectric transmission path. With such a configuration, the viscoelastic member absorbs vibration when external force is applied to the signal processing boards, so that vibration of the first signal processing board and the second signal processing board can be reduced, and a millimeter wave signal between the signal processing boards can be transmitted through the viscoelastic member at a high speed without using connectors and cables.
Abstract:
Provided is an in-millimeter-wave dielectric transmission device. The in-millimeter-wave dielectric transmission device includes a semiconductor chip provided on one interposer substrate and capable of in-millimeter-wave dielectric transmission, an antenna structure connected to the semiconductor chip, two semiconductor packages including a molded resin configured to cover the semiconductor chip and the antenna structure, and a dielectric transmission path provided between the two semiconductor packages to transmit a millimeter wave signal. The semiconductor packages are mounted such that the antenna structures thereof are arranged with the dielectric transmission path interposed therebetween.
Abstract:
Provided is an in-millimeter-wave dielectric transmission device. The in-millimeter-wave dielectric transmission device includes a semiconductor chip provided on one interposer substrate and capable of in-millimeter-wave dielectric transmission, an antenna structure connected to the semiconductor chip, two semiconductor packages including a molded resin configured to cover the semiconductor chip and the antenna structure, and a dielectric transmission path provided between the two semiconductor packages to transmit a millimeter wave signal. The semiconductor packages are mounted such that the antenna structures thereof are arranged with the dielectric transmission path interposed therebetween.
Abstract:
An electronic device provided with a plurality of circuit boards uses a support member for supporting the circuit boards as the transmission path of a wireless signal. For example, the electronic device is provided with a first printed circuit board for processing a millimeter-wave signal, a second printed circuit board which is signal-coupled to the printed circuit board and receives the millimeter-wave signal to subject the received signal to signal processing, and a waveguide which is disposed with a predetermined dielectric constant between the printed circuit boards, wherein the waveguide constitutes the dielectric transmission path, and the waveguide supports the printed circuit boards. This configuration makes it possible to receive the electromagnetic wave based on a millimeter-wave signal radiated from one end of the waveguide constituting the dielectric transmission path, at the other end thereof.
Abstract:
Provided is an in-millimeter wave dielectric transmission device including a first signal processing board for processing a millimeter wave signal, a second signal processing board signal-coupled to the first signal processing board to receive the millimeter wave signal and perform signal processing with respect to the millimeter wave signal, and a viscoelastic member provided between the first signal processing board and the second signal processing board and having a predetermined relative dielectric constant and a predetermined dielectric dissipation factor. The viscoelastic member constitutes a dielectric transmission path. With such a configuration, the viscoelastic member absorbs vibration when external force is applied to the signal processing boards, so that vibration of the first signal processing board and the second signal processing board can be reduced, and a millimeter wave signal between the signal processing boards can be transmitted through the viscoelastic member at a high speed without using connectors and cables.
Abstract:
Signal distribution, signal switching, and signal collection are performed with a simple configuration. An electronic device comprises a transmission unit (108) for transmitting, as a wireless signal, a signal to be transmitted and a reception unit (208) for receiving the wireless signal transmitted from the transmission unit. In the electronic device, a plurality of pairs of wireless signal transmission points in the transmission unit and wireless signal reception points in the reception unit can be formed. Using the pairs of transmission points and reception points make it possible to execute at least either one of signal distribution in which the same signal to be transmitted from a transmission point is transmitted to the multiple reception points and signal switching in which a signal to be transmitted from a transmission point is selectively transmitted to any of the multiple reception points. The signal to be transmitted is transmitted as a wireless signal. In this case, the signal distribution, signal switching, and signal collection are performed in a wireless signal portion. Since a portion where a signal transmission is performed through electric wiring does not interpose the portion where the signal distribution, signal switching, and signal collection are performed, the signal distribution, signal switching, and signal collection can be performed with a simple configuration.
Abstract:
An electronic device provided with a plurality of circuit boards uses a support member for supporting the circuit boards as the transmission path of a wireless signal. For example, the electronic device is provided with a first printed circuit board for processing a millimeter-wave signal, a second printed circuit board which is signal-coupled to the printed circuit board and receives the millimeter-wave signal to subject the received signal to signal processing, and a waveguide which is disposed with a predetermined dielectric constant between the printed circuit boards, wherein the waveguide constitutes the dielectric transmission path, and the waveguide supports the printed circuit boards. This configuration makes it possible to receive the electromagnetic wave based on a millimeter-wave signal radiated from one end of the waveguide constituting the dielectric transmission path, at the other end thereof.
Abstract:
Disclosed herein is a wireless transmission system, including: a plurality of systems of millimeter wave signal transmission lines capable of individually transmitting information in a millimeter waveband independently of each other; a sending section disposed on one end side of each of the plural systems of millimeter wave signal transmission lines; and a reception section disposed on the other end side of each of the plural systems of millimeter wave signal transmission lines. The sending section is adapted to convert a signal of an object of transmission into a millimeter wave signal and supply the millimeter wave signal to the millimeter signal transmission line. The reception section is adapted to receive the millimeter wave signal transmitted thereto through the millimeter wave signal transmission line and convert the received millimeter wave signal into the signal of the object of transmission.