Abstract:
An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to; and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
Abstract:
The invention provides computational methods and compositions for identifying polymorphic repeats in genes. Candidate polymorphic repeats are identified by detecting tandem repeats in a target coding sequence, scoring the repeats for polymorphic probability, and generating a dataset correlating the repeats with polymorphic probability. Actual polymorphic repeat are identified by further detecting the candidate polymorphic repeat in each of a population of different coding sequences, and determining whether the candidate polymorphic repeat is polymorphic in the population. Computationally derived polymorphic repeats are validated with phenotypic variations and these correlates are used to detect the presence or absence of such phenotypic variation in test genes. Variances at polymorphic repeats are identified by detecting in a test gene or coding region the presence or absence of variance at a disclosed unconventional polymorphic repeat.
Abstract:
An advanced imaging spectrograph system and method are provided for very high throughput identification, sequencing and/or genotyping of DNA and other molecules. The system is based on the integration of improved electrophoresis structures with an imaging spectrophotometer that records the entire emission spectra along an imaging line across a sequencing gel (or capillary array). The system includes spectral shape matching to improve dye identification allowing the use of dyes having nearly any emission spectra and allowing greater than four dye multiplexing.
Abstract:
A hollow, elongated, micropipette, which is specially adapted for use in spectrometers and which has an inner wall on which a coating containing a reagent has been deposited, is provided. The reagent is selected from among those that interact with one or more compounds in a sample solution, which is introduced into the micropipette, in order to permit the compounds to be detected by virtue of light absorption or emission by the complexes formed upon interaction of the reagent with the compound of interest in the sample.Upon introduction of the sample solution into the micropipette, a sufficient amount of the reagent in the coating dissolves in the solution and reacts, either directly or indirectly with a compound or compounds of interest in the solution to render such compound detectable and to permit quantification of the concentration of the compound in the sample. The resulting solution is held in the micropipette for analysis of the light absorption or light emission characteristics of the solution to determine the composition of the solution or the concentration of a particular constituent of the solution.In preferred embodiments, the coating on the inner surface of the micropipette includes a binding agent or adhesive that delays, preferably for about 5 to 15 sec, the dissolution of the reagent in the solution.
Abstract:
A coaxial microwave absorption diagnostic device comprises a hollow cylindrical outer layer conductor with a coaxially aligned conductor rod extending therethrough and a dielectric material which interconnects the outer layer to the conductor rod. The device is formed with a passageway which is directed perpendicular to the longitudinal axis of the device and which passed through the outer layer, the conductor rod and the dielectric material. As so formed, the passageway is positioned for receiving a sample holder, such as a small capillary tube holding a sample solution. A variable or fixed frequency oscillator is electrically connected to an input end of the conductor rod for sending microwave power through the device and a diode senses the output portion of this microwave power which has passed through the device. The absorbed power, i.e. the input microwave power less the output microwave power, is determined by a comparator and used to analyze the sample.
Abstract:
An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to, and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
Abstract:
The invention relates to computer-based systems and methods for the design, comparison and analysis of genetic and proteomic databases. In a particular embodiment, the recited systems and methods have been implemented in a computer tool called ARROGANT. ARROGANT, in the analysis mode, is a comprehensive tool for providing annotation to large gene and protein collections. ARROGANT takes in a large collection of sequence identifiers and associates it with other information collected from many sources like sequence annotations, pathways, homology, polymorphisms, artifacts, etc. The simultaneous annotation for a large assembly of genes makes the collection of genomic/EST sequences truly informative.
Abstract:
An optical correlator (10) that uses a spatial light modulator (11) to illuminate a pattern of on and off pixels into a length of an optical fiber (12). The spatial light modulator (11) is optically coupled to the length of fiber (12) so that the illumination enters the fiber along that length. The optical fiber (12) also carries light representing a bitstream of data. At the optical fiber, the illumination from the spatial light modulator interacts with the illumination of the optical bitstream. A detector (14) is optically coupled to the same length of fiber (12) and detects the resulting optical response to determine if a correlation exists.
Abstract:
An apparatus and method for regulating the behavior of an atomic, molecular or cellular target is disclosed that includes a light source positioned to redirect light from the light source toward the target site. The light source may be, e.g., a combination of a light and a micromirror array or a liquid crystal display. A computer connected to, and controlling, the light source and a variable spectrum generator is placed in the path of light produced by the light source, wherein the light that is passed through said variable spectrum generator is of one or more wavelengths of light and may be used for, e.g., microscopy or image scanning.
Abstract:
A conversion assembly for converting a spectrophotometer to a fluorometer which utilizes the light source and light detector of the spectrophotometer. The assembly has a conversion adaptor which is positionable in the spectrophotometer between the light source and the light detector. The adaptor is an enclosure having a receptacle for holding a sample container filled with the sample being analyzed and having openings formed therein to provide a light path for excitation light from the light source to the sample container and further to provide a light path for emitted luminescent light from the sample container to the light detector. In one embodiment the excitation light is centered on an optical shield on the front of the enclosure while light receiving openings at the edges of the front of the enclosure are positioned to receive off center excitation light. In another embodiment a light receiving opening is formed in the side of the enclosure and excitation light centered on the front of the enclosure is reflected around to the opening in the side of the enclosure by a plurality of reflectors.