摘要:
There is set forth in one embodiment an apparatus and method for imparting a phase shift to an input waveform for output of a converted waveform. In one embodiment, a phase shift can be provided by four wave mixing of an input waveform and a pump pulse. In one embodiment, there is set forth an apparatus and method for generating a high resolution time domain representation of an input waveform comprising: dispersing the input waveform to generate a dispersed input waveform; subjecting the dispersed input waveform to four wave mixing by combining the dispersed input waveform with a dispersed pump pulse to generate a converted waveform; and presenting the converted waveform to a detector unit. In one embodiment a detector unit can include a spectrometer (spectrum analyzer) for recording of the converted waveform and output of a record representing the input waveform.
摘要:
An optical processing system comprises an optical input; one or more spatial light modulator arrays; and a detector array; wherein at least of said spatial light modulator arrays incorporates a plurality of data elements focusing elements; said data elements and/or said focussing elements having multiple degrees of freedom.
摘要:
A monolithic or hybrid integrated optical information processor or optical information processing system having at least one LED array and plurality of light modulating array elements, each controlled by respective control signals, and arranged so that each light modulating array element lies in a different fractional Fourier transform plane. In some implementations, at least a portion of the resulting system is implemented in a stack of element materials. In an implementation, a segment of graded index material lies between consecutive light modulating array elements. In an implementation, an LED array is used as an image source and another LED array is used as an image sensor to transform the processed image into an electrical output.
摘要:
A monolithic or hybrid integrated optical information processor or optical information processing system having at least one LED array and plurality of light modulating array elements, each controlled by respective control signals, and arranged so that each light modulating array element lies in a different fractional Fourier transform plane. In some implementations, at least a portion of the resulting system is implemented in a stack of element materials. In an implementation, a segment of graded index material lies between consecutive light modulating array elements. In an implementation, an LED array is used as an image source and another LED array is used as an image sensor to transform the processed image into an electrical output.
摘要:
An imaging system and method are presented for use in compressed imaging. The system comprises at least one rotative vector sensor, and optics for projecting light from an object plane on said sensor. The system is configured to measure data indicative of Fourier transform of an object plane light field at various angles of the vector sensor rotation.
摘要:
A monolithic or hybrid integrated optical processor or optical processing system having a plurality of phase shifting array elements, each controlled by respective control signals, and arranged so that each phase shifting array element lies in a different fractional Fourier transform plane. In various embodiments, at least a portion of the resulting system is implemented in a stack of element materials. In one embodiment, a segment of graded index material lies between consecutive phase shifting array elements. Other features include obtaining images from an electronically-controllable image source, using an image sensor to change the processed image into an electrical output, and using at least one of the phase shifting array element to introduce a phase shift.
摘要:
A method processes an optical image. The method includes providing a measured magnitude of the Fourier transform of a two-dimensional complex transmission function. The method further includes providing an estimated phase term of the Fourier transform of the two-dimensional complex transmission function. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the two-dimensional complex transmission function. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated two-dimensional complex transmission function by applying at least one constraint to the inverse Fourier transform.
摘要:
The Fourier transforming properties of simple lenses and related optical elements is well known and heavily used in a branch of engineering known as “Fourier Optics.” Classical Fourier Optics allows for relatively easy, inexpensive, flexible signal processing of images by using lenses or other means to take two-dimensional Fourier transforms of an optical wavefront and using a translucent plate or similar means in this location to introduce an optical transfer function operation on the optical wavefront. The image processing possibilities have historically been limited to transfer functions that mathematically are “positive-definite,” i.e. those which affect only amplitude and do not introduce varying phase relationships. The method of this invention uses Fractional Fourier transform properties of lenses or other elements or optical environments to introduce one or more positive-definite optical transfer functions at various locations outside the Fourier plane so as to realize or closely approximate arbitrary non-positive-definite transfer functions. Designs can be straightforwardly obtained by methods of approximation. The invention provides for the application of these methods to create single and multiple channel controllable optical processors which may be used for image or other types of computation, including computation with complex-valued arithmetic, visual color, and wide-spectrum optical signals. The methods can be extended for other arrangements, such as phase-shifting filter elements and non-quadratic graded-index materials (which do not naturally invoke the Fractional Fourier transform operation). Applications of the invention include integrated optics, optical computing systems, particle beam systems, radiation accelerators, astronomical observation methods, and controllable lens systems.
摘要:
Fractional Fourier transform properties of lenses or other optical environments are applied to one or more positive-definite optical transfer functions at locations outside the Fourier plane to realize or closely approximate arbitrary non-positive-definite transfer functions varying in both amplitude and phase. Controllable filter elements can be employed to create controllable optical processors which may be used for image filtering and optical computations using complex-valued arithmetic for monochromatic, color, and wide-spectrum optical signals. Applications include integrated optics, optical computing systems, particle beam systems, radiation accelerators, astronomical observation systems, and controllable lens systems.
摘要:
Fractional Fourier transform properties of lenses or other elements or optical environments are used to introduce one or more positive-definite optical transfer functions outside the Fourier plane so as to realize or closely approximate arbitrary non-positive-definite transfer functions. Designs can be straightforwardly obtained by methods of approximation. The invention provides for single and multiple channel controllable optical processors which may be used for image or other types of computation, including computation with complex-valued arithmetic, visual color, and wide-spectrum optical signals. The invention also provides for synthesis of Fractional Fourier transforms, extensions to non-Hermite basis functions, phase-shifting filter elements and non-quadratic graded-index materials (which do not naturally invoke the Fractional Fourier transform operation). Applications include integrated optics, optical computing systems, particle beam systems, radiation accelerators, astronomical observation methods, and controllable lens systems.