Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k>α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
Abstract:
Provided is a substrate with multilayer reflective film used to manufacture a reflective mask having a multilayer reflective film having high reflectance with respect to exposure light and little film stress. The substrate with multilayer reflective film is provided with a multilayer reflective film for reflecting exposure light, the substrate with multilayer reflective film comprising a multilayer film obtained by building up an alternating stack of low refractive index layers and high refractive index layers on a substrate, and the multilayer reflective film contains krypton (Kr).
Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k>α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
Abstract:
A reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask.
Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k > α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
The present invention aims to provide a reflective mask blank and a reflective mask which have a highly smooth multilayer reflective film as well as a low number of defects, and methods of manufacturing the same, and aims to prevent charge-up during a mask defect inspection using electron beams.The present invention provides a reflective mask blank for EUV lithography in which a conductive underlying film, a multilayer reflective film that reflects exposure light, and an absorber film that absorbs exposure light are layered on a substrate, wherein the conductive underlying film is a single-layer film made of a tantalum-based material or a ruthenium-based material with a film thickness of greater than or equal to 1 nm and less than or equal to 10 nm that is formed adjacent to the multilayer reflective film, or the conductive underlying film is a multilayer film including a layer of a tantalum-based material with a film thickness of greater than or equal to 1 nm and less than or equal to 10 nm that is formed adjacent to the multilayer reflective film and a layer of a conductive material that is formed between the layer of the tantalum-based material and the substrate. The present invention also provides a reflective mask manufactured using the reflective mask blank. Furthermore, a semiconductor device is manufactured using the reflective mask.
Abstract:
The substrate with a multilayer reflective film includes a substrate and the multilayer reflective film configured to reflect exposure light, the multilayer reflective film comprising a stack of alternating layers on a substrate, the alternating layers including a low refractive index layer and a high refractive index layer, in which the multilayer reflective film contains molybdenum (Mo) and at least one additive element selected from nitrogen (N), boron (B), carbon (C), zirconium (Zr), oxygen (O), hydrogen (H) and deuterium (D), and the crystallite size of the multilayer reflective film calculated from a diffraction peak of Mo (110) by X-ray diffraction is 2.5 nm or less.