Abstract:
To provide an ion milling apparatus adapted to suppress the contamination of a beam forming electrode. The ion milling apparatus includes: an ion gun containing therein a beam forming electrode for forming an ion beam; a specimen holder for fixing a specimen to be processed by irradiation of an ion beam; a mask for shielding a part of the specimen from the ion beam; and an ion gun controller for controlling the ion gun.
Abstract:
To provide an ion gun of a penning discharge type capable of achieving a milling rate which is remarkably higher than that in the related art, an ion milling device including the same, and an ion milling method.An ion generation unit includes a cathode that emits electrons, an anode that is provided within the ion generation unit and has an inner diameter of 5.2 mm or less, and magnetic-field generation means using a permanent magnet of which a maximum energy product ranges from 110 kJ/m3 to 191 kJ/m3.
Abstract:
An ion beam device according to the present invention includes a gas field ion source (1) including an emitter tip (21) supported by an emitter base mount (64), a ionization chamber (15) including an extraction electrode (24) and being configured to surround the emitter tip (21), and a gas supply tube (25). A center axis line of the extraction electrode (24) overlaps or is parallel to a center axis line (14A) of the ion irradiation light system, and a center axis line (66) passing the emitter tip (21) and the emitter base mount (64) is inclinable with respect to a center axis line of the ionization chamber (15). Accordingly, an ion beam device including a gas field ion source capable of adjusting the direction of the emitter tip is provided.
Abstract:
The ionized gas supplied to the emitter tip of a gas field ionization ion source is cooled and purified to enable supplying a reliable and stable ion beam. Impurities contained in the ionized gas destabilize the field ionization ion source. The invention is configured to include a first heat exchanger thermally connected to a part of the field ionization ion source, a cryocooler capable of cooling a second gas line and a cold head, the second gas line being connected to the first heat exchanger and circulating a refrigerant, and a second heat exchanger that cools the first and second gas lines and is connected to the cold head.
Abstract:
In order to provide an ion beam apparatus excellent in safety and stability even when a sample is irradiated with hydrogen ions, the ion beam apparatus includes a vacuum chamber, a gas field ion source that is installed in the vacuum chamber and has an emitter tip, and gas supply means for supplying a gas to the emitter tip. The gas supply means includes a mixed gas chamber that is filled with a hydrogen gas and a gas for diluting the hydrogen gas below an explosive lower limit.
Abstract:
To provide an ion gun of a penning discharge type capable of narrowing a beam with a low ion beam current at a low acceleration voltage, an ion milling device including the same, and an ion milling method.An ion milling device that controls half width of a beam profile of an ion beam with which a sample is irradiated from an ion gun to be in a range of 200 μm to 350 μm. The device includes: the ion gun that ionizes a gas supplied from the outside, and emits an ion beam; a gas-flow-rate varying unit that varies a flow rate of the gas supplied to the ion gun; and a current measurement unit that measures a current value of the ion beam emitted from the ion gun. The gas-flow-rate varying unit sets a gas flow rate to be higher than a gas flow rate at which the ion beam current has a maximum value based on the current value measured by the current measurement unit and the flow rate of the gas determined by the gas-flow-rate varying unit.
Abstract:
The objective of the present invention is to provide an ion beam device capable of forming a nanopyramid stably having one atom at the front end of an emitter tip even when the cooling temperature is lowered in order to observe a sample with a high signal-to-noise ratio. In the present invention, the ion beam device, wherein an ion beam generated from an electric field-ionized gas ion source is irradiated onto the sample to observe or process the sample, holds the temperature of the emitter tip at a second temperature higher than a first temperature for generating the ion beam and lower than room temperature, sets the extraction voltage to a second voltage higher than the first voltage used when generating the ion beam, and causes field evaporation of atoms at the front end of the emitter tip, when forming the nanopyramid having one atom at the front end of the emitter tip.
Abstract:
A gas field ionization source in which an ion beam current is stable for a long time is achieved in an ion beam apparatus equipped with a field ionization source that supplies gas to a chamber, ionizes the gas, and applies the ion beam to a sample. The ion beam apparatus includes an emitter electrode having a needle-like extremity; a chamber inside which the emitter electrode is installed; a gas supply unit that supplies the gas to the chamber; a cooling unit that is connected to the chamber and cools the emitter electrode; a discharge type exhaust unit that exhausts gas inside the chamber; and a trap type exhaust unit that exhausts gas inside the chamber. The exhaust conductance of the discharge type exhaust unit is larger than the total exhaust conductance of the trap type exhaust unit.
Abstract:
Provided is a charged particle beam microscope which has a small mechanical vibration amplitude of a distal end of an emitter tip, is capable of obtaining an ultra-high resolution sample observation image and removing shaking or the like of the sample observation image. A gas field ion source includes: an emitter tip configured to generate ions; an emitter-base mount configured to support the emitter tip; a mechanism configured to heat the emitter tip; an extraction electrode installed to face the emitter tip; and a mechanism configured to supply a gas to the vicinity of the emitter tip, wherein the emitter tip heating mechanism is a mechanism of heating the emitter tip by electrically conducting a filament connecting at least two terminals, the terminals are connected by a V-shaped filament, an angle of the V shape is an obtuse angle, and the emitter tip is connected to a substantial center of the filament.
Abstract:
An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder, a gas tube, a gas volume control valve, and a stop valve.