Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Abstract:
A manufacturing method for an edge illuminated type photodiode has: a process of forming an impurity-doped layer of a first conductivity type in each of device forming regions in a semiconductor substrate; a process of forming an impurity-doped layer of a second conductivity type in each of the device forming regions; a process of forming a trench extending in a direction of thickness of the semiconductor substrate from a principal surface, at a position of a boundary between adjacent device forming regions, by etching to expose side faces of the device forming regions; a process of forming an insulating film on the exposed side faces of the device forming regions; a process of forming an electrode for each corresponding impurity-doped layer on the principal surface side of the semiconductor substrate; and a process of implementing singulation of the semiconductor substrate into the individual device forming regions
Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Abstract:
Each semiconductor chip of a detector comprises a semiconductor substrate having a plurality of photodetector units, an insulating layer formed on a front face of the semiconductor substrate, a common electrode arranged on the insulating layer, a readout line for electrically connecting a quenching resistance of each photodetector unit and the common electrode to each other, and a through electrode extending from the common electrode to a rear face of the semiconductor substrate through a through hole of the semiconductor substrate.
Abstract:
An electronic component includes a base, a laminate of a plurality of conductive metal material layers, and a solder layer made of Au—Sn alloy solder. The laminate is disposed on the base. The solder layer is disposed on the laminate. The laminate includes a surface layer made of Au as the conductive metal material layer constituting an outermost layer. The surface layer includes a solder layer-disposing region in which the solder layer is disposed and a solder layer-empty region in which the solder layer is not disposed. The solder layer-disposing region and the solder layer-empty region are spatially separated from each other.
Abstract:
A substrate dividing method which can thin and divide a substrate while preventing chipping, and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.