Abstract:
A data output driver of a semiconductor memory device can minimize a difference in slew rate of an output signal according to a selected bit organization. The data output driver includes a pull-up driver and a pull-down driver. The pull-up driver pulls up an output terminal and the pull-down driver pulls down the output terminal. In particular, current driving capabilities of the pull-up driver and/or the pull-down driver are changed in response to bit organization information signals of the semiconductor memory device.
Abstract:
A data output driver of a semiconductor memory device can minimize a difference in slew rate of an output signal according to a selected bit organization. The data output driver includes a pull-up driver and a pull-down driver. The pull-up driver pulls up an output terminal and the pull-down driver pulls down the output terminal. In particular, current driving capabilities of the pull-up driver and/or the pull-down driver are changed in response to bit organization information signals of the semiconductor memory device.
Abstract:
In a communication system, data is selectively transmitted using single-ended or differential signaling. The data is transmitted in relation to a plurality of clock signals having different relative phases. When the data is transmitted using single-ended signaling, data on adjacent signal lines undergo logic transitions at different times in relation to the plurality of clock signals.
Abstract:
A semiconductor memory device having improved refresh characteristics includes a memory array including a plurality of memory cells; a test unit configured to test refresh characteristics of the memory array and generate a first fail address signal; a storage unit configured to store the first fail address signal; and a refresh unit configured to perform a refresh operation on the memory array, wherein the refresh unit is configured to receive the first fail address signal from the storage unit, perform the refresh operation on a first memory cell that does not correspond to the first fail address signal according to a first period, and perform the refresh operation on a second memory cell that corresponds to the first fail address signal according to a second period that is shorter than the first period.
Abstract:
The invention relates generally to a multi-chip package (MCP) memory device, and more particularly, but without limitation, to a MCP memory device having a reduced size. In one embodiment, the MCP memory device includes: a transfer memory chip; and a plurality of memory chips coupled to the transfer memory chip, each of the plurality of memory chips including an internal voltage generating circuit, the transfer memory chip configured to receive a plurality of command signals from outside the MCP memory device, the transfer memory chip further configured to output a plurality of control signals to the plurality of memory chips based on the plurality of command signals. Embodiments of the invention also relate to a method of controlling an internal voltage of the MCP memory device.
Abstract:
An input buffer which detects an input signal. The input buffer including an output node, a first buffer, and a second buffer. The first buffer may control the voltage level of the output node when the voltage level of a reference voltage signal is equal to a predetermined voltage level. The second buffer may control the voltage level of the output node in response to the input signal when the voltage level of the reference voltage signal is lower than the predetermined voltage level. The second buffer may maintain the output node at a first level. The second buffer may include an output control section and a level control unit. The output control section may receive the input signal and generate a level output signal at a second level. The level control section may generate a control signal which maintains the output node at the first level, in response to the level output signal when the voltage level of the reference voltage signal is lower than the predetermined voltage level of the first voltage and may intercept the control signal when the voltage level of the reference voltage signal is equal to the predetermined voltage level.
Abstract:
A multi memory chip stacked on a multi core CPU includes a plurality of memories, each memory corresponding to a CPU core from among the CPU cores and being configured to directly transmit data between the other memories of the multi memory chip.
Abstract:
Provided is a memory system and a method that can initialize a data channel at a high speed without the need to increase the number of pins in a semiconductor memory device, and not requiring a circuit to perform an initialization. The memory system includes a memory module equipped with a plurality of semiconductor memory devices; a memory controller controlling the semiconductor memory devices; and a data channel and a command/address channel connected between the plurality of semiconductor memory devices and the memory controller, wherein read latencies and write latencies of the plurality of semiconductor memory devices are controlled by the memory controller.
Abstract:
A semiconductor memory device that minimizes chip area is provided. The semiconductor memory device includes local input/output (I/O) lines, global I/O lines, and a memory core that is coupled between a bit line and a complementary bit line. The memory core includes a memory cell array, a bit line equalizer circuit, a PMOS sense amplifier (S/A), a PMOS S/A driving circuit for driving the PMOS S/A, a transmission gate circuit, an NMOS S/A, and an NMOS S/A driving circuit for driving the NMOS S/A. First and second transistors for connecting the local I/O lines to the global I/O lines are installed between adjacent bit lines. The PMOS S/A driving circuit, which is a first driving transistor, and the NMOS S/A driving circuit, which is a second driving transistor, are also installed between adjacent bit lines. Because the semiconductor memory device arranges a PMOS S/A driving circuit, an NMOS S/A driving circuit, and a gating circuit for connecting local I/O lines to global I/O lines, between adjacent bit lines, the chip area is reduced.
Abstract translation:提供了最小化芯片面积的半导体存储器件。 半导体存储器件包括本地输入/输出(I / O)线,全局I / O线和耦合在位线和互补位线之间的存储器核。 存储器芯包括存储单元阵列,位线均衡器电路,PMOS读出放大器(S / A),用于驱动PMOS S / A的PMOS S / A驱动电路,传输门电路,NMOS S / A 以及用于驱动NMOS S / A的NMOS S / A驱动电路。 用于将本地I / O线连接到全局I / O线的第一和第二晶体管安装在相邻位线之间。 作为第一驱动晶体管的PMOS S / A驱动电路和作为第二驱动晶体管的NMOS S / A驱动电路也安装在相邻位线之间。 由于半导体存储器件在相邻位线之间配置PMOS S / A驱动电路,NMOS S / A驱动电路和用于将本地I / O线连接到全局I / O线的选通电路,芯片面积减小 。
Abstract:
An input buffer includes an amplifier circuit, such as a differential amplifier circuit, inverting amplifier circuit or pull-up/pull-down amplifier circuit. A momentary boost circuit is coupled to an input buffer input terminal, an input terminal of the amplifier circuit, and an output terminal of the amplifier circuit, and is operative to generate a boosted input signal at the input terminal of the amplifier circuit from an input signal at an input buffer input terminal for an interval that is terminated responsive to an output signal at the output terminal of the amplifier circuit. The momentary boost circuit may include a detector circuit coupled to the output terminal of the amplifier circuit and operative to generate a control signal responsive to a transition of the output signal, and a boost circuit, coupled between the input buffer input terminal and the input terminal of the amplifier circuit and operatively associated with the detector circuit, that receives the input signal at the input buffer input terminal and generates the boosted input signal at the input terminal of the amplifier circuit from the received input signal responsive to the control signal. For example, the boost circuit may include a capacitor coupled between the input buffer input terminal and the input terminal of the amplifier circuit, and a switch that couples and decouples the input terminal of the amplifier circuit to a reference voltage source responsive to the control signal. The detector circuit may be operative to generate a pulse responsive to a transition of the output signal, and the switch may be operative to couple the input terminal of the amplifier circuit to the reference voltage source responsive to the pulse.