Abstract:
The invention concerns an automatic clutch in a motor vehicle drive train. During travel, the clutch is controlled with excess contact pressure such that the transmissible moment of the clutch exceeds the engine torque by a predetermined amount. At low speeds or in low gears and/or when travelling slowly, the amount of excess contact pressure is considerably reduced. At high speeds or in high gears and/or at when travelling fast, the clutch is set at the maximum transmissible moment.
Abstract:
A motor vehicle wherein the power train comprises an automated clutch between the engine and a manually shiftable transmission. The control circuit for the clutch is designed in such a way that the clutch is disengaged in response to actuation of the gear shifting lever simultaneously with one or more additional undertakings such as actuation of the gas pedal and of one or more brakes, a reduction of the speed of the vehicle below a preselected value, and/or many others.
Abstract:
The power train of a motor vehicle has an automated clutch which can transmit torque from a prime mover to a transmission in response to signals from an electronic control unit. The latter causes the clutch to transmit a constant torque during a first interval, to thereupon transmit a gently varying torque during a second interval if the operator of the motor vehicle fails to carry out certain necessary operations prior to elapse of the first interval, and to thereafter transmit a pronouncedly varying torque during a third interval if no remedial undertakings were completed during the second interval. The third interval is cut short if the engine tends to choke, and the full or shortened third interval can be followed by a fourth interval corresponding to the first interval or by a further interval corresponding to the second interval.
Abstract:
An automated clutch between the engine and the variable-speed transmission in the power train of a motor vehicle is operated by a control unit which receives signals from several circuits and/or sensors via one or more conductors. The control unit shifts from a normal operating mode to an emergency mode when one or more sensors and/or circuits and/or conductors are defective. When in emergency mode, the control unit disengages the clutch when the driver starts the engine while the vehicle brake or the parking brake is applied. This ensures that the engine can drive the vehicle as soon as the transmission is shifted into a forward gear or into reverse gear and the application of the brake or brakes is terminated because the control unit is then again free to engage the clutch. Furthermore, such mode of operation enables the driver to shift the transmission into or from a selected gear in response to the application of a relatively small force to the gear shifting lever.
Abstract:
There are disclosed a method of and an apparatus for automated actuation of a friction clutch or another torque transmitting system in the power train of a motor vehicle. An actuator for the torque transmitting system can be rendered operative by the ignition key and/or as a result of one or more activities of the operator of the motor vehicle prior or subsequent to insertion of the ignition key. The activity or activities can include the engagement of a brake, the shifting of a transmission lever, stepping on the gas pedal and/or others.
Abstract:
The invention relates to a control system, in particular an emergency control system, of an automatic clutch. The clutch can operate with slip controlled by the driving speed when engaged, or can be disengaged or remain disengaged when the engine speed is excessive, and can also be disengaged when there is an idling signal.
Abstract:
In a vehicle in whose drive train a manually shifted transmission with automated clutch actuation is located, in order to suppress improper actuations of the clutch, an inhibition time is applied to the signal activating an intended shifting function.
Abstract:
The invention concerns an automatic clutch in the drive train of a motor vehicle having a transmission with manual or voluntary selection of the different gears. After a gear-change, the engagement of the clutch is controlled as a function of the shift speed during the gear-change, such that, at high shift speeds, only a shortened clutch slip phase can occur.
Abstract:
The invention concerns an automatic clutch in a motor vehicle drive train. An automatic control device constantly determines values for the travel of an adjusting unit actuating the clutch and associated values of the moment transmitted by the clutch in order to establish whether the travel available is sufficient to reach a threshold value of the transmitted coupling moment. A warning signal is optionally emitted.
Abstract:
The invention concerns an automatic clutch in a motor vehicle drive train with a manually operated gearshift. If an accelerator pedal or the like used to control the engine and a vehicle service brake are not activated, the clutch is set at a creeping moment when a gear is engaged and the engine is running. When the service brake is actuated, this creeping moment is maintained for a predetermined time interval, decreased or suppressed in a time-delayed manner.