摘要:
A method is disclosed for fabricating a semiconductor device and especially for contacting a semiconductor device. A silicon substrate is provided which has a device region formed at the surface thereof and which is contacted with a silicide. An insulating layer overlies the substrate and has an opening therethrough which exposes a portion of that device region. Titanium nitride is deposited in a blanket layer overlying the silicide and the insulating layer. A leveling agent such as a spin-on glass is applied to the structure to substantially fill the opening. That leveling agent is then anisotropically etched to leave the leveling agent only in the opening. The leveling agent is used as an etch mask to remove the portion of titanium nitride which is located outside the opening. After removing the remaining leveling agent, the titanium nitride in the opening is used as a nucleating surface for the selective deposition of a tungsten plug which fills the contact opening. The titanium nitride layer serves as both a nucleating surface and as a barrier layer which separates the tungsten from the underlying silicon.
摘要:
A mixture of materials can be used within a layer of an electronic device to improve electrical and physical properties of the layer. In one set of embodiments, the layer can be a dielectric layer, such as a gate dielectric layer or a capacitor dielectric layer. The dielectric layer can include O, and two or more dissimilar metallic elements. In one specific embodiment, two dissimilar elements may have the same single oxidation state and be miscible within each other. In one embodiment, the dielectric layer can include an alloy of (HfO2)(1-x)(ZrO2)x, wherein x is between 0 and 1. Each of Hf and Zr has a single oxidation state of +4. Other combinations are possible. Improved electrical and physical properties can include better control over grain size, distribution of grain sizes, thickness of the layer across a substrate, improved carrier mobility, threshold voltage stability, or any combination thereof.
摘要:
A method of fabricating a MOS transistor that comprises a dual-metal gate that is formed from heterotypical metals. A gate dielectric (34), such as HfO2, is deposited on a semiconductor substrate. A sacrificial layer (35), is next deposited over the gate dielectric. The sacrificial layer is patterned so that the gate dielectric over a first (pMOS, for example) area (32) of the substrate is exposed and gate dielectric over a second (nMOS, for example) area (33) of the substrate continues to be protected by the sacrificial layer. A first gate conductor material (51) is deposited over the remaining sacrificial area and over the exposed gate dielectric. The first gate conductor material is patterned so that first gate conductor material over the second area of the substrate is etched away. The sacrificial layer over the second area prevents damage to the underlying dielectric material as the first gate conductor material is removed.
摘要:
A semiconductor dielectric (10) is formed by providing a base layer (12) having a surface. A thin interface layer (13) is formed at the surface of the base layer (12). The thin interface layer has a substantial concentration of both nitrogen and fluorine. A thermal oxide layer (14) is formed overlying the interface layer (13). A deposited dielectric layer (16) is formed overlying the thermal oxide layer (14). The deposited dielectric layer (16) is optionally densified by a thermal heat cycle. The deposited dielectric layer (16) has micropores that are misaligned to micropores in the thermal oxide layer (14) to provide enhanced features which the nitrogen/fluorine interface further improves the dielectric's features.
摘要:
An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.
摘要:
Defects in a thin dielectric layer of a semiconductor device are plugged by a discontinuous layer to maintain integrity of the dielectric without degrading the reliability of the device. In one form of the invention, a semiconductor device (10) includes an oxide layer (14) formed on a substrate material (12). Growth of a nitride layer (18), using CVD techniques, is initiated in any defects (16) in the oxide layer, but growth is terminated prior to entering a continuous growth stage. By plugging the defects with nitride without forming a continuous nitride layer, defect density in thin oxides is reduced without experiencing disadvantages associated with thick oxide-nitride stacks. The invention is also applicable to plugging defects in dielectric layers other than oxide. Furthermore, growth of a discontinuous layer may be achieved with a material other than a nitride using CVD techniques.
摘要:
An improved LOCOS isolation process is disclosed wherein an oxidizable layer is conformably dieposited to overlie a silicon nitride oxidation mask. In accordance with one embodiment of the invention, a composite layer comprising a buffer layer and an oxidation resistant material is patterned to form an oxidation mask on a silicon substrate. A layer of an oxidizable material is conformably deposited to overlie the oxidation mask. During the oxidation process used to form electrical isolation structures in the substrate, a substantial reduction in lateral oxidation encroachment is realized.
摘要:
A process for selective deposition of a refractory metal such as tungsten at high temperatures and low pressure via chemical vapor deposition during semiconductor device manufacturing is provided. A dielectric layer is nitrided by chemical deposition of a nitrogen bearing gas prior to LPCVD deposition of tungsten for purposes such as contact metallization of current conducting electrodes and current controlling electrodes of transistors. Since nitridation of the dielectric is a surface chemical reaction and not an addition of material to the dielectric, no additional complexity is introduced into the LPCVD process. The refractory metal does not substantially deposit on the nitrided dielectric thereby providing selective metal deposition.
摘要:
A semiconductor device and a process for forming the device includes a conductor that overlies an insulating layer. In one embodiment, the conductor includes a first conductive portion, a second conductive portion, and a third conductive portion. The second conductive portion lies between the first and third conductive portions. The first conductive portion includes a first element, and the third conductive portion includes a metal and silicon without a significant amount of the first element. In another embodiment, the conductor is a gate electrode or a capacitor electrode. The conductor includes a first conductive portion, a second conductive portion, a third conductive portion, and a fourth conductive portion. The second conductive portion lies between the first and third conductive portions and has a different composition compared to the first, third, and fourth conductive portion. The third conductive portion lies between the second and fourth conductive portions and has a different composition compared to the first and fourth conductive portions.
摘要:
Metal semiconductor nitride gate electrodes (40, 70) are formed for use in a semiconductor device (60). The gate electrodes (40, 70) may be formed by sputter deposition, low pressure chemical vapor deposition (LPCVD), or plasma enhanced chemical vapor deposition (PECVD). The materials are expected to etch similar to silicon-containing compounds and may be etched in traditional halide-based etching chemistries. The metal semiconductor nitride gate electrodes (40, 70) are relatively stable, can be formed relatively thinner than traditional gate electrodes (40, 70) and work functions near the middle of the band gap for the material of the substrate (12).