Abstract:
Provided is a bonding structure of an electronic equipment including first electrodes extended in a first direction and arranged in a second direction on a stretchable display panel having stretchability, second electrodes extended in a first direction and arranged in a second direction on a substrate and facing the first electrodes, and solder bonding parts interposed between the first electrodes and the second electrodes, facing each other in the second direction, and constituting a plurality of rows in the first direction.
Abstract:
Provided is a semiconductor device. The semiconductor device includes: a first semiconductor layer having a first region with a first device and a second region with a second device; a device isolation pattern provided in the first semiconductor layer and electrically separating the first device and the second device from each other; a drain provided on a lower surface of the first region of the first semiconductor layer; and a second semiconductor layer provided on a lower surface of the second region of the first semiconductor layer.
Abstract:
A laser bonding method includes forming a bonding part including an adhesive layer and a conductive particle disposed within the adhesive layer on a substrate; aligning a bonding target by disposing the bonding target on a surface of the bonding part opposite the substrate; disposing a pressing part on a surface of the bonding target that is opposite to the bonding part and pressing the bonding target onto the bonding part through the pressing part; heating the bonding target by irradiating at least the pressing part with a laser and conducting heat from the pressing part to the bonding target and from the bonding target to the bonding part; and bonding together the bonding part and the bonding target by the heat conducted from the bonding target to the bonding part so that the conductive particle electrically connects the substrate and the bonding target. The pressing part may be removed.
Abstract:
A method of fabricating a solder-on-pad structure is provided. The method may include providing a substrate with a pad, coating a solder bump maker including a first resin and a solder powder on the substrate, heating the solder bump maker to a temperature lower than a melting point of the solder powder to aggregate the solder powder on the pad, and removing the first resin.
Abstract:
A method of fabricating a solder-on-pad structure is provided. The method may include providing a substrate with a pad, coating a solder bump maker including a first resin and a solder powder on the substrate, heating the solder bump maker to a temperature lower than a melting point of the solder powder to aggregate the solder powder on the pad, and removing the first resin.
Abstract:
A pattern-forming method for forming a conductive circuit pattern, the pattern-forming method including the steps of: preparing a pattern-forming composition composed of: Cu powder; solder particles for electrically coupling the Cu powder; a polymer resin; a deforming agent that is selected from among acrylate oligomer, polyglycols, glycerides, polypropylene glycol, dimethyl silicon, simethinecone, tributyl phosphare, and polymethylsiloxane, and that increases bonding force between the Cu powder and the solder particles; a curing agent; and a reductant; forming a circuit pattern by printing the pattern-forming composition on a substrate; heating the circuit pattern at a temperature effective to cure the pattern-forming composition and provide the conductive circuit pattern; and electrolytically plating a metal layer onto the conductive circuit pattern. A circuit pattern having superior conductivity is formed at low cost.
Abstract:
Provided are methods of forming a bump and a semiconductor device with the same. The method may include providing a substrate with pads, forming a bump maker layer to cover the pads and include a resin and solder particles, thermally treating the bump maker layer to aggregate the solder particles onto the pads, removing the resin to expose the aggregated solder particles, forming a resin layer to cover the aggregated solder particles, and reflowing the aggregated solder particles to form bumps on the pads.