Abstract:
A photoresist and post etch cleaning solution for semiconductor wafers comprising: A. a polar aprotic solvent, B. an inorganic base; C. a co-solvent for said inorganic base; D. a unsaturated cycloaliphatic compound having a ring ether group and at least one substituent bearing a primary hydroxyl group; E. an organic base comprising an amine compound; and F. a nonionic surfactant bearing at least one ether group. The wafer containing photoresist residue or post etch residue can be cleaned by contacting the solution in a spray or immersion.
Abstract:
Processes are described to etch metals. In an embodiment, a process may include contacting a substrate with a stripping solution to remove photoresist from the substrate to produce a stripped substrate. The stripped substrate may include a plurality of solder pillars and a plurality of metal-containing field regions disposed around the plurality of solder pillars. In an illustrative embodiment, the plurality field regions may include copper. Additionally, the process may include rinsing the stripped substrate to produce a rinsed substrate. The rinsed substrate may be substantially free of a Sn layer or a Sn oxide layer. Further, the process may include contacting the rinsed substrate with an etch solution that is capable of removing an amount of one or more metals from the plurality of field regions.
Abstract:
A process is described that is useful for removing organic substances from substrates, for example, electronic device substrates such as microelectronic wafers or flat panel displays. A process is presented for applying a minimum volume of a chemical stripping composition as a coating to the inorganic substrate whereby sufficient heat is added and the organic substances are completely removed by rinsing. The process may be suitable for removing and, in some instances, completely dissolving photoresists of the positive and negative varieties, and especially negative dry film photoresist from electronic devices.
Abstract:
Formulations of solutions and processes are described to form a substrate including a dopant. In particular implementations, the dopant may include arsenic (As). In an embodiment, a dopant solution is provided that includes a solvent and a dopant. In a particular embodiment, the dopant solution may have a flashpoint that is at least approximately equal to a minimum temperature capable of causing atoms at a surface of the substrate to attach to an arsenic-containing compound of the dopant solution. In one embodiment, a number of silicon atoms at a surface of the substrate are covalently bonded to the arsenic-containing compound.
Abstract:
A photoresist and post etch cleaning solution for semiconductor wafers comprising: A. a polar aprotic solvent, B. an inorganic base; C. a co-solvent for said inorganic base; D. a unsaturated cycloaliphatic compound having a ring ether group and at least one substituent bearing a primary hydroxyl group; E. an organic base comprising an amine compound; and F. a nonionic surfactant bearing at least one ether group. The wafer containing photoresist residue or post etch residue can be cleaned by contacting the solution in a spray or immersion.
Abstract:
Formulations of solutions and processes are described to form a substrate including a dopant. In particular implementations, the dopant can include arsenic (As) or phosphorus (P). In an embodiment, a dopant solution is provided that includes a solvent and a dopant-containing molecule. In a particular embodiment, the solvent of the dopant solution can have a flashpoint that is at least 55° C. In some cases, the dopant-containing molecule can have a molecular weight that is no greater than about 300 g/mol. In other instances, a ratio of a concentration of a dopant-containing molecule relative to a concentration of a contaminant is no greater than about 1×1010.
Abstract:
Compositions are described that are useful for removing organic and organometallic substances from substrates, for example, photoresist wafers. Processes are presented that apply a minimum volume of a composition as a coating to the inorganic substrate whereby sufficient heat is added and the organic or organometallic substances are completely removed by rinsing. The compositions and processes may be suitable for removing and, in some instances, completely dissolving photoresists of the positive and negative varieties, and specifically negative dry film photoresist from electronic devices.
Abstract:
A process for cleaning a semi-conductor wafer comprising providing etched wafer containing metal pillars, contacting the etched wafer with a cleaning solution, removing the wafer from the cleaning solution, wherein the resulting wafer is substantially free of post etch residues and photoresist residues without etching the metal pillars by the cleaning solution, the cleaning solution comprising: A. a polar aprotic solvent, B. an inorganic base; C. a co-solvent for said inorganic base; D. a unsaturated cycloaliphatic compound having a ring ether group and at least one substituent bearing a primary hydroxyl group; and E. an organic base comprising an amine compound. The wafer containing photoresist residue or post etch residue can be cleaned by contacting the solution in a spray or immersion.
Abstract:
Processes are described to etch metals. In an embodiment, a process may include contacting a substrate with a stripping solution to remove photoresist from the substrate to produce a stripped substrate. The stripped substrate may include a plurality of solder pillars and a plurality of metal-containing field regions disposed around the plurality of solder pillars. In an illustrative embodiment, the plurality field regions may include copper. Additionally, the process may include rinsing the stripped substrate to produce a rinsed substrate. The rinsed substrate may be substantially free of a Sn layer or a Sn oxide layer. Further, the process may include contacting the rinsed substrate with an etch solution that is capable of removing an amount of one or more metals from the plurality of field regions.
Abstract:
Formulations of solutions and processes are described to form a substrate including a dopant. In particular implementations, the dopant may include arsenic (As). In an embodiment, a dopant solution is provided that includes a solvent and a dopant. In a particular embodiment, the dopant solution may have a flashpoint that is at least approximately equal to a minimum temperature capable of causing atoms at a surface of the substrate to attach to an arsenic-containing compound of the dopant solution. In one embodiment, a number of silicon atoms at a surface of the substrate are covalently bonded to the arsenic-containing compound.