摘要:
Systems and methods for molecular self-assembly are provided. The molecular self-assembly receives a substrate that includes one or more regions of dielectric material. A molecularly self-assembled layer is formed on an exposed surface of the dielectric material. The molecularly self-assembled layer includes material(s) having a molecular characteristic and/or a molecular type that includes one or more of a molecular characteristic and/or a molecular type of a head group of molecules of the material, a molecular characteristic and/or a molecular type of a terminal group of molecules of the material, and a molecular characteristic and/or a molecular type of a linking group of molecules of the material. The molecular characteristic(s) and molecular type(s) are selected according to at least one pre-specified property of the molecularly self-assembled layer.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
Substrate processing systems and methods are described for processing substrates having two or more regions. The processing includes one or more of molecular self-assembly and combinatorial processing. At least one of materials, processes, processing conditions, material application sequences, and process sequences is different for the processing in at least one region of the substrate relative to at least one other region of the substrate. Processing systems are described that include numerous processing modules. The modules include a site-isolated reactor (SIR) configured for one or more of molecular self-assembly and combinatorial processing of a substrate.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
A system for molecular self-assembly referred to herein as a “molecular self-assembly system (MSAS)” includes at least one interface configured to receive at least one substrate. The MSAS also includes at least one molecular self-assembly module coupled to the interface. The MSAS can also include one or more of pre-processing modules, other molecular self-assembly processing modules, and post-processing modules, and may include any number, combination, and/or type of other modules. Each module of the MSAS can contain at least one of a number of different processes as appropriate to a processing configuration of the MSAS. The MSAS also includes at least one handler coupled to the interface and configured to move the substrate between the interface and one or more of the modules.
摘要:
A method for analyzing and optimizing fabrication techniques using variations of materials, unit processes, and process sequences is provided. In the method, a subset of a semiconductor manufacturing process sequence and build is analyzed for optimization. During the execution of the subset of the manufacturing process sequence, the materials, unit processes, and process sequence for creating a certain structure is varied. During the combinatorial processing, the materials, unit processes, or process sequence is varied between the discrete regions of a semiconductor substrate, wherein within each of the regions the process yields a substantially uniform or consistent result that is representative of a result of a commercial manufacturing operation. A tool for optimizing a process sequence is also provided.
摘要:
A method for analyzing and optimizing fabrication techniques using variations of materials, unit processes, and process sequences is provided. In the method, a subset of a semiconductor manufacturing process sequence and build is analyzed for optimization. During the execution of the subset of the manufacturing process sequence, the materials, unit processes, and process sequence for creating a certain structure is varied. During the combinatorial processing, the materials, unit processes, or process sequence is varied between the discrete regions of a semiconductor substrate, wherein within each of the regions the process yields a substantially uniform or consistent result that is representative of a result of a commercial manufacturing operation. A tool for optimizing a process sequence is also provided.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
Combinatorial evaluation of dry semiconductor processes is described, including rotating a mask comprising a plurality of apertures, wherein the mask is positioned between a dry semiconductor processing source and the substrate, and performing a dry semiconductor process through the apertures of the mask at a plurality of intervals during the rotating the mask to combinatorially create a plurality of processed regions on the substrate, wherein the apertures of the mask are arranged in such a way that the plurality of processed regions have different geometries relative to the processing source, and analyzing the processed regions to determine effects of time and geometry on the processed regions.