摘要:
A local interconnect is formed with a gate conductor line that has an exposed sidewall on an active area of a semiconductor substrate. The exposes sidewall comprises a silicon containing material that may form a silicide alloy upon silicidation. During a silicidation process, a gate conductor sidewall silicide alloy forms on the exposed sidewall of the gate conductor line and an active area silicide is formed on the active area. The two silicides are joined to provide an electrical connection between the active area and the gate conductor line. Multiple sidewalls may be exposed on the gate conductor line to make multiple connections to different active area silicides.
摘要:
A method is provided of forming a contact to a semiconductor structure. A current-conducting member is formed which extends horizontally over a first portion of a semiconductor device region but not over a second portion of such semiconductor device region. A first film is formed which extends over the second portion and only partially over the member to expose a contact portion of the member. A first contact via is formed in conductive communication with the contact portion. The first contact via has a silicide-containing region self-aligned to an area of the member contacted by the contact via. A second contact via is formed in conductive communication with the second portion, the second contact via extending through the first film.
摘要:
A local interconnect is formed with a gate conductor line that has an exposed sidewall on an active area of a semiconductor substrate. The exposes sidewall comprises a silicon containing material that may form a silicide alloy upon silicidation. During a silicidation process, a gate conductor sidewall silicide alloy forms on the exposed sidewall of the gate conductor line and an active area silicide is formed on the active area. The two silicides are joined to provide an electrical connection between the active area and the gate conductor line. Multiple sidewalls may be exposed on the gate conductor line to make multiple connections to different active area silicides.
摘要:
A structure is provided which includes a semiconductor device region including a first portion and a second portion. A current-conducting member is provided, which extends horizontally over the first portion but not over the second portion. A first film, such as a stress-imparting film, extends over the second portion and only partially over the current-conducting member to expose a contact portion of the member. A first contact via is provided in conductive communication with the contact portion of the member, the first contact via having a self-aligned silicide-containing region. A second contact via is provided in conductive communication with the second portion of the semiconductor device region, the second contact via extending through the first film.
摘要:
A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
摘要:
A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
摘要:
Disclosed herein is a transistor comprising a first fin having a first gate electrode disposed across the first fin; the gate electrode contacting opposing surfaces of the fin; and a planar oxide layer having a second gate electrode disposed across the planar oxide layer to form a planar metal oxide semiconductor field effect transistor; the first fin and the planar oxide layer being disposed upon a surface of a wafer.
摘要:
An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
摘要:
An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
摘要:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.