Abstract:
A device for passive equalization and slew-rate control of a signal includes a first branch that includes a first driver coupled in series with an equalization capacitor, and a second branch that includes a second driver coupled in series with a resistor. The second branch may be coupled in parallel to the first branch, and the first branch may be configurable to enable one of passive equalization or slew-rate control of the signal based on a mode control signal.
Abstract:
A high-speed clock generator device includes a phase-interpolator (PI) circuit, a smoothing block, and inverter-based low-pass filters. The PI circuit receives a multiple clock signals with different phase angles and generates an output clock signal having a correct phase angle. The smoothing block smooths the clock signals with different phase angles and generates a number of smooth clock signals featuring improved linearity. The inverter-based low-pass filters filter harmonics of the clock signals with different phase angles.
Abstract:
Methods and apparatuses are described for a DSP receiver with an analog-to-digital converter (ADC) having high speed, low BER performance with low power and area requirements. Speed is increased for multi-path ADC configurations by resolving a conventional bottleneck. ADC performance is improved by integrating calibration and error detection and correction, such as distributed offset calibration and redundant comparators. Power and area requirements are dramatically reduced by using low BER rectification to nearly halve the number of comparators in a conventional high speed, low BER flash ADC.
Abstract:
Techniques are described herein that provide an interface for receiving and deserializing digital bit stream(s). For instance, a receiver for a high-speed deserializer may include digital slicers, a digital phase interpolator, and a digital clock phase generator. The digital slicers may be configured to determine a digital value of a data input. The digital phase interpolator may be configured to generate an interpolated clock signal based on input clock signals that correspond to respective phases of a reference clock. The phase of the interpolated clock tracks the data input to the receiver through a clock recovery loop. The digital clock phase generator may be configured to generate output clock signals to control timing of the respective digital slicers. The receiver may further include a single digital eye monitor configured to monitor a data eye of the data input.
Abstract:
A device for high-speed clock generation may include an injection locking-ring oscillator (ILRO) configured to receive one or more input clock signals and to generate multiple clock signals with different equally spaced phase angles. A phase-interpolator (PI) circuit may be configured to receive the multiple coarse spaced clock signals and to generate an output clock signal having a correct phase angle. The PI circuit may include a smoothing block that may be configured to smooth the multiple clock signals with different phase angles and to generate multiple smooth clock signals. A pulling block may be configured to pull edges of the multiple smooth clock signals closer to one another.
Abstract:
Methods and apparatuses are described for a DSP receiver with an analog-to-digital converter (ADC) having high speed, low BER performance with low power and area requirements. Speed is increased for multi-path ADC configurations by resolving a conventional bottleneck. ADC performance is improved by integrating calibration and error detection and correction, such as distributed offset calibration and redundant comparators. Power and area requirements are dramatically reduced by using low BER rectification to nearly halve the number of comparators in a conventional high speed, low BER flash ADC.
Abstract:
A device for high-speed clock generation may include an injection locking-ring oscillator (ILRO) configured to receive one or more input clock signals and to generate multiple clock signals with different equally spaced phase angles. A phase-interpolator (PI) circuit may be configured to receive the multiple coarse spaced clock signals and to generate an output clock signal having a correct phase angle. The PI circuit may include a smoothing block that may be configured to smooth the multiple clock signals with different phase angles and to generate multiple smooth clock signals. A pulling block may be configured to pull edges of the multiple smooth clock signals closer to one another.
Abstract:
A device for passive equalization and slew-rate control of a signal includes a first branch and a second branch. The first branch includes a first driver coupled in series with an equalization capacitor. The second branch includes a second driver coupled in series with a resistor. The second branch may be coupled in parallel to the first branch. The first branch may be configurable to enable either passive equalization or slew-rate control of the signal based on a mode control signal.
Abstract:
Techniques are described herein that provide an interface for receiving and deserializing digital bit stream(s). For instance, a receiver for a high-speed deserializer may include digital slicers, a digital phase interpolator, and a digital clock phase generator. The digital slicers may be configured to determine a digital value of a data input. The digital phase interpolator may be configured to generate an interpolated clock signal based on input clock signals that correspond to respective phases of a reference clock. The phase of the interpolated clock tracks the data input to the receiver through a clock recovery loop. The digital clock phase generator may be configured to generate output clock signals to control timing of the respective digital slicers. The receiver may further include a single digital eye monitor configured to monitor a data eye of the data input.