Abstract:
A high-speed clock generator device includes a phase-interpolator (PI) circuit, a smoothing block, and inverter-based low-pass filters. The PI circuit receives a multiple clock signals with different phase angles and generates an output clock signal having a correct phase angle. The smoothing block smooths the clock signals with different phase angles and generates a number of smooth clock signals featuring improved linearity. The inverter-based low-pass filters filter harmonics of the clock signals with different phase angles.
Abstract:
Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
Abstract:
Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
Abstract:
A device for high-speed clock generation may include an injection locking-ring oscillator (ILRO) configured to receive one or more input clock signals and to generate multiple clock signals with different equally spaced phase angles. A phase-interpolator (PI) circuit may be configured to receive the multiple coarse spaced clock signals and to generate an output clock signal having a correct phase angle. The PI circuit may include a smoothing block that may be configured to smooth the multiple clock signals with different phase angles and to generate multiple smooth clock signals. A pulling block may be configured to pull edges of the multiple smooth clock signals closer to one another.
Abstract:
A device for high-speed clock generation may include an injection locking-ring oscillator (ILRO) configured to receive one or more input clock signals and to generate multiple clock signals with different equally spaced phase angles. A phase-interpolator (PI) circuit may be configured to receive the multiple coarse spaced clock signals and to generate an output clock signal having a correct phase angle. The PI circuit may include a smoothing block that may be configured to smooth the multiple clock signals with different phase angles and to generate multiple smooth clock signals. A pulling block may be configured to pull edges of the multiple smooth clock signals closer to one another.
Abstract:
A communication system is described that includes a transmitter to transmit data using one or more drivers. The drivers may drive the data in a manner that accords with pre-emphasis being selectively enabled or disabled for each driver. The pre-emphasis, when enabled, is applied by corresponding driver. The drivers may also be programmably selected and enabled or disabled. The transmitter also includes one or more driver selection circuits. The driver selection circuits may be configured to select one or more of the drivers to transmit the data, to selectively enable or disable pre-emphasis to be applied by each of the selected drivers, and to provide the data, or representations thereof, to the selected drivers.