Abstract:
According to one aspect of the present disclosure, a method of coating a substrate with at least one cathode assembly having a sputter target and a magnet assembly that is rotatable around a rotation axis is provided. The method comprises: Coating of the substrate while moving the magnet assembly in a reciprocating manner in a first angular sector; and subsequent coating of the substrate while moving the magnet assembly in a reciprocating manner in a second angular sector different from the first angular sector. According to a second aspect, a coating apparatus for performing said method is provided.
Abstract:
According to the present disclosure, a semiconductor substrate handling systems and substrate carrier is provided. The substrate carrier for holding a substrate to be processed and for transporting the substrate in or through a processing area with a transport device includes a main portion for holding the substrate; a first end portion adapted to be supported by the transport device; and at least one first intermediate portion connecting the main portion with the first end portion. The at least one first intermediate portion includes one or more cut-outs adapted to reduce thermal energy transfer between the main portion and the first end portion.
Abstract:
A vacuum processing apparatus (110) for deposition of a material on a substrate is provided. The vacuum processing apparatus (110) includes a vacuum chamber comprising a processing area (111); a deposition apparatus (112) within the processing area (111) of the vacuum chamber; a cooling surface (113) inside the vacuum chamber; and one or more movable shields (220) between the cooling surface (113) and the processing area (111).
Abstract:
According to one aspect of the present disclosure, a method of coating a substrate (100) with at least one cathode assembly (10) having a sputter target (20) and a magnet assembly (25) that is rotatable around a rotation axis (A) is provided. The method comprises: Coating of the substrate (100) while moving the magnet assembly in a reciprocating manner in a first angular sector (12); and subsequent coating of the substrate (100) while moving the magnet assembly (25) in a reciprocating manner in a second angular sector (14) different from the first angular sector (12). According to a second aspect, a coating apparatus for performing said method is provided.
Abstract:
A apparatus for vacuum sputter deposition is described. The apparatus includes, a vacuum chamber; three or more sputter cathodes within the vacuum chamber for sputtering material on a substrate; a gas distribution system for providing a processing gas including H2 to the vacuum chamber; a vacuum system for providing a vacuum inside the vacuum chamber; and a safety arrangement for reducing the risk of an oxy-hydrogen explosion, wherein the safety arrangement comprises a dilution gas feeding unit connected to the vacuum system for dilution of the H2-content of the processing gas.
Abstract:
An evaporation source for deposition of evaporated material on a substrate is described. The evaporation source including a crucible for material evaporation; a distribution assembly with one or more outlets for providing the evaporated material to the substrate, the distribution assembly being in fluid communication with the crucible; and a measurement assembly. The measurement assembly includes a tube connecting an interior space of the distribution assembly with a pressure sensor.
Abstract:
A material deposition arrangement for depositing evaporated material on a substrate in a vacuum chamber is described. The material deposition arrangement includes a crucible for providing material to be evaporated; a linear distribution pipe in fluid communication with the crucible; and a plurality of nozzles in the distribution pipe for guiding the evaporated material into the vacuum chamber. Each nozzle may have a nozzle inlet for receiving the evaporated material, a nozzle outlet for releasing the evaporated material to the vacuum chamber, and a nozzle passage between the nozzle inlet and the nozzle outlet. The nozzle passage of at least one of the plurality of nozzles includes a first section having a first length and a first size, and a second having a second length and a second size. The ratio of the second size to the first size is between 2 and 10.