Abstract:
One embodiment of the present invention relates to a method for built-in self-measurement (BISM) of jitter components. A built-in self-measurement controller on the host integrated circuit (and, in some cases, a slave controller on a partner integrated circuit) may be used to control various switches to form various loopback circuits. A calibrated jittery data pattern is transmitted through each of the various loopback circuits. On-die instrumentation (ODI) circuitry may then be used to measure intrinsic jitter components for each loopback circuit via data representations such as eye-diagrams, or jitter histograms, or bit error ratio bathtub curves. The intrinsic jitter for link components (i.e. the jitter components such as deterministic jitter (DJ), random jitter (RJ), total jitter (TJ)) may then be determined based on the measured intrinsic jitters for the various loopback circuits. Other embodiments and features are also disclosed.
Abstract:
A system includes an encoding circuit, a line quality monitor circuit, and a controller circuit. The encoding circuit generates a first data signal indicating encoded data using a first forward error correction code. The line quality monitor circuit generates an indication of a line quality of a second data signal using an eye monitor circuit that monitors the second data signal. The controller circuit causes the encoding circuit to generate encoded data in the first data signal using a second forward error correction code in response to a change in the indication of the line quality of the second data signal.
Abstract:
Design systems are provided to assist users in designing circuits that include communications links. A communications link may include a transmitter link subsystem, a receiver link subsystem, and a channel subsystem that interconnects the transmitter and receiver subsystems. A user may specify global link performance characteristics such as bit error rate and data rate. Measured link subsystem performance characteristics may be gathered and stored in a database as probability distribution functions. When analyzing a link, known link subsystems parameters supplied by the user may be used to retrieve appropriate link subsystem performance data. The retrieved link subsystem data and the global link performance data may be analyzed and used to produce recommended subsystem limits. A logic design system may use information on a user's logic design and the recommended limits in producing programmable logic device configuration data.
Abstract:
One embodiment relates to a computer-implemented method that selects one of at least three procedures to determine equalization settings jointly for a transmitter and a receiver. A first process may be used if the end-of-channel signal-to-noise ratio (SNR) is greater than an SNR threshold and the equalization capability of the transmitter is greater than the equalization capability of the receiver. A second process may be used if the end-of-channel SNR is greater than the SNR threshold and the equalization capability of the transmitter is less than the equalization capability of the receiver. A third process may be used if the end-of-channel SNR is less than the SNR threshold. Other embodiments and features are also disclosed.
Abstract:
A system includes an encoding circuit, a line quality monitor circuit, and a controller circuit. The encoding circuit generates a first data signal indicating encoded data using a first forward error correction code. The line quality monitor circuit generates an indication of a line quality of a second data signal using an eye monitor circuit that monitors the second data signal. The controller circuit causes the encoding circuit to generate encoded data in the first data signal using a second forward error correction code in response to a change in the indication of the line quality of the second data signal.
Abstract:
One embodiment relates to a method of automated adaptation of a transmitter equalizer. A multi-dimensional search space of tap settings for the transmitter equalizer is divided into multiple single-dimensional search spaces, each single-dimensional search space being associated with a single tap of the transmitter equalizer. The multiple single-dimensional search spaces are searched in series, and a tap for a single-dimensional search space is set before searching a next single-dimensional search space. Another embodiment relates to a transceiver with adaptation circuitry configured to perform this method. Other embodiments, aspects, and features are also disclosed.
Abstract:
A method for performing simulation includes determining whether a model is available for a channel. A model for the channel is generated using signal attenuation parameters provided by a user in response to determining that the model is unavailable. The model includes crosstalk characteristics from crosstalk parameters provided by the user.
Abstract:
Systems, methods, apparatus, and techniques relating to a transmitter interface are disclosed. A soft-IP transmitter interface includes a Reed-Solomon encoder operating according to any one of multiple bus width and bandwidth parameter pairs, and a gearbox module that includes multiple gearboxes. The multiple gearboxes receive input data at a bus width and clock rate parameter pair specified by the soft-IP transmitter interface and convert the input data into output data according to a number of physical lanes and bandwidth parameter pair specified by a physical medium attachment (PMA) standard.
Abstract:
One embodiment relates to an apparatus for generating a data output signal. The apparatus includes a pre-emphasis filter and an edge-shape filter. The edge-shape filter includes a non-linearity correction stage that applies a non-linearity correction and a linear filter that applies linear filtering. Another embodiment relates to a method of generating tap coefficients for a pre-emphasis filter. A summation of products of tap coefficients and time-shifted base single-bit response waveforms is used to form a first waveform, and a measured single-bit response waveform is used to provide a second waveform. The tap coefficients are adjusted to fit the first waveform to the second waveform. Other embodiments, aspects, and features are also disclosed.
Abstract:
One embodiment relates to a receiver with both decision feedback equalization and on-die instrumentation. A clock data recovery loop obtains a recovered clock signal from an input signal, and a first sampler, which is triggered by the recovered clock signal, generates a recovered data signal from the input signal. A phase interpolator receives the recovered clock signal and generates a phase-interpolated clock signal. A second sampler is triggered by the recovered clock signal in a decision feedback equalization mode and by the phase-interpolated clock signal in an on-die instrumentation mode. Other embodiments and features are also disclosed.