摘要:
A memory film operable at a low voltage and a method of manufacturing the memory film; the method, comprising the steps of forming a first insulation film (112) on a semiconductor substrate (111) forming a first electrode, forming a first conductor film (113) on the first insulation film (112), forming a second insulation film (112B) on the surface of the first conductor film (113), forming a third insulation film containing conductor particulates (114, 115) on the second insulation film (112B), and forming a second conductor film forming a second electrode on the third insulation film.
摘要:
A semiconductor device having a two-layer well structure and a small margin required at the boundary of a well region and comprising a substrate-bias variable transistor and a DTMOS. Field effect transistors (223) are formed on a P-type shallow well region (212). The depth of a shallow device isolation region (214) on the P-type shallow well region (212) is less than the depth of the junction between an N-type deep well region (227) and the P-type shallow well region (212). Therefore the field effect transistors (223) share the P-type shallow well region (212). The P-type shallow well regions (212) independently of each other are easily formed since they are isolated from each other by a deep device isolation region (226) and the N-type deep well region (227).
摘要:
A semiconductor device with dynamic threshold transistors includes a complex element isolation region composed of a shallow element isolation region made of shallow trench isolation and deep element isolation regions provided on both sides of the shallow element isolation region. Since the shallow element isolation region is made of the shallow trench isolation, Bird's beak in the shallow element isolation region is small. This prevents off leakage failure due to stress caused by the bird's beak. The deep element isolation region has an approximately constant width which allows the complex element isolation region to be wide.
摘要:
A semiconductor device 1910 comprises a semiconductor substrate 100 including an isolation region 101 and an active region 102, a gate electrode 104 provided on the active region 102 via a gate insulating film 103, part of a side of the gate electrode 104 being covered with a gate electrode side wall insulating film 105, and a source region 106 and a drain region 106 provided on opposite sides of the gate electrode 104 via the gate electrode side wall insulating film 105. At least one of the source region 106 and the drain region 106 has a second surface for contacting a contact conductor. The second surface is tilted with respect to a first surface A–A′. An angle between the second surface and a surface of the isolation region is 80 degrees or less.
摘要:
There is provided a semiconductor device including DTMOS and a substrate variable-bias transistor and a portable electronic device both operable with reduced power consumption. N-type deep well regions are formed in one P-type semiconductor substrate. The N-type deep well regions are electrically isolated by the P-type semiconductor substrate. Over the N-type deep well regions, a P-type deep well region and a P-type shallow well region are formed to fabricate an N-type substrate variable-bias transistor. Over the N-type deep well region, an N-type shallow well region is formed to fabricate a P-type substrate variable-bias transistor. Further a P-type DTMOS and an N-type DTMOD are fabricated.
摘要:
There is provided a semiconductor device of low power consumption and high reliability having DTMOS' and substrate-bias variable transistors, and portable electronic equipment using the semiconductor device. On a semiconductor substrate (11), trilayer well regions (12, 14, 16; 13, 15, 16) are formed, and DTMOS' (29, 30) and substrate-bias variable transistors (27, 28) are provided in the shallow well regions (16, 17). Large-width device isolation regions (181, 182, 183) are provided at boundaries forming PNP, NPN or NPNP structures, where a small-width device isolation region (18) is provided on condition that well regions on both sides are of an identical conductive type. Thus, a plurality of well regions of individual conductive types where substrate-bias variable transistors (27, 28) of individual conductive types are provided can be made electrically independent of one another, allowing the power consumption to be reduced. Besides, the latch-up phenomenon can be suppressed.
摘要:
The yield of a semiconductor device is improved which has a large-scale logic circuit or which has both a logic circuit and a memory. A basic circuit block is provided with an input/output circuit. A transmission line and a branch line connect the input/output circuits so that information can be exchanged through the input/output circuits between one basic circuit block and another basic circuit block. The memory in each basic circuit block or in each input/output circuit can be programmed from the outside to designate the destination of a signal. By thus changing the program in the memory, the transmission destination of a signal can be changed to give various functions efficiently with a limited circuit scale. Moreover, if a basic circuit block fails another basic circuit block substitutes for it to improve the yield drastically.
摘要:
There is provided a semiconductor storage device capable of high integration. On a top surface of a semiconductor substrate, a plurality of device isolation regions (16) each extending and meandering in a lateral direction are formed so as to be arrayed with respect to a longitudinal direction, by which active regions are defined between neighboring ones of the device isolation regions (16), respectively. Dopant diffusion regions (source or drain) are formed at individual turnover portions (corresponding to contacts (14), (15)), respectively, of the meanders within the active regions. A plurality of word lines (11) extending straight in the longitudinal direction run on the channel regions within the active regions via a film having memory function, respectively. A first bit line (12) extending straight in the lateral direction runs on the dopant diffusion region (corresponding to contact (14)) provided at a crest-side turnover portion. A second bit line (15) extending straight in the lateral direction runs on the dopant diffusion region (corresponding to contact (15)) provided at a trough-side turnover portion.
摘要:
A semiconductor device 1910 comprises a semiconductor substrate 100 including an isolation region 101 and an active region 102, a gate electrode 104 provided on the active region 102 via a gate insulating film 103, part of a side of the gate electrode 104 being covered with a gate electrode side wall insulating film 105, and a source region 106 and a drain region 106 provided on opposite sides of the gate electrode 104 via the gate electrode side wall insulating film 105. At least one of the source region 106 and the drain region 106 has a second surface for contacting a contact conductor. The second surface is tilted with respect to a first surface A-A′. An angle between the second surface and a surface of the isolation region is 80 degrees or less.
摘要:
A semiconductor device with dynamic threshold transistors includes a complex element isolation region composed of a shallow element isolation region made of shallow trench isolation and deep element isolation regions provided on both sides of the shallow element isolation region. Since the shallow element isolation region is made of the shallow trench isolation, bird's beak in the shallow element isolation region is small. This prevents off leakage failure due to stress caused by the bird's beak. The deep element isolation region has an approximately constant width which allows the complex element isolation region to be wide.