Abstract:
A method and device are described for encoding erroneous data in an error correction code (ECC) protected memory. In one embodiment, incoming data including a plurality of data symbols and a data integrity marker is received. At least one extra symbol is used to mark the incoming data as error-free data or erroneous data (i.e., poison) based on the data integrity marker. ECC may be created to protect the data symbols. The ECC may include a plurality of check symbols, a plurality of unused symbols and the at least one extra symbol. In another embodiment, an error marker may be propagated from a single ECC word to all ECC words of data block (e.g., a cache line, a page, and the like) to prevent errors due to corruption of the error marker caused by faulty memory in the erroneous ECC word.
Abstract:
A method of storing stack data in a cache hierarchy is provided. The cache hierarchy comprises a data cache and a stack filter cache. Responsive to a request to access a stack data block, the method stores the stack data block in the stack filter cache, wherein the stack filter cache is configured to store any requested stack data block.
Abstract:
A method and apparatus for predicting and managing a fault in memory includes detecting an error in data. The error is compared to one or more stored errors in a filter, and based upon the comparison, the error is predicted as a transient error or a permanent error for further action.
Abstract:
A method of managing memory includes installing a first cacheline at a first location in a cache memory and receiving a write request. In response to the write request, the first cacheline is modified in accordance with the write request and marked as dirty. Also in response to the write request, a second cacheline is installed that duplicates the first cacheline, as modified in accordance with the write request, at a second location in the cache memory.
Abstract:
A method and device are described for encoding erroneous data in an error correction code (ECC) protected memory. In one embodiment, incoming data including a plurality of data symbols and a data integrity marker is received. At least one extra symbol is used to mark the incoming data as error-free data or erroneous data (i.e., poison) based on the data integrity marker. ECC may be created to protect the data symbols. The ECC may include a plurality of check symbols, a plurality of unused symbols and the at least one extra symbol. In another embodiment, an error marker may be propagated from a single ECC word to all ECC words of data block (e.g., a cache line, a page, and the like) to prevent errors due to corruption of the error marker caused by faulty memory in the erroneous ECC word.
Abstract:
A method of partitioning a data cache comprising a plurality of sets, the plurality of sets comprising a plurality of ways, is provided. Responsive to a stack data request, the method stores a cache line associated with the stack data in one of a plurality of designated ways of the data cache, wherein the plurality of designated ways is configured to store all requested stack data.
Abstract:
A method and apparatus for predicting and managing a device failure includes responsive to a predicted failure of a memory device, the predicted failure based on sensor data associated with the memory device, determining a further action for the memory device.
Abstract:
Systems, apparatuses, and methods for implementing a hardware enforcement mechanism to enable platform-specific firmware visibility into an error state ahead of the operating system are disclosed. A system includes at least one or more processor cores, control logic, a plurality of registers, platform-specific firmware, and an operating system (OS). The control logic allows the platform-specific firmware to decide if and when the error state is visible to the OS. In some cases, the platform-specific firmware blocks the OS from accessing the error state. In other cases, the platform-specific firmware allows the OS to access the error state such as when the OS needs to unmap a page. The control logic enables the platform-specific firmware, rather than the OS, to make decisions about the replacement of faulty components in the system.
Abstract:
Described is a system and method for a multi-level memory hierarchy. Each level is based on different attributes including, for example, power, capacity, bandwidth, reliability, and volatility. In some embodiments, the different levels of the memory hierarchy may use an on-chip stacked dynamic random access memory, (providing fast, high-bandwidth, low-energy access to data) and an off-chip non-volatile random access memory, (providing low-power, high-capacity storage), in order to provide higher-capacity, lower power, and higher-bandwidth performance. The multi-level memory may present a unified interface to a processor so that specific memory hardware and software implementation details are hidden. The multi-level memory enables the illusion of a single-level memory that satisfies multiple conflicting constraints. A comparator receives a memory address from the processor, processes the address and reads from or writes to the appropriate memory level. In some embodiments, the memory architecture is visible to the software stack to optimize memory utilization.
Abstract:
Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.