Abstract:
A method and device are described for encoding erroneous data in an error correction code (ECC) protected memory. In one embodiment, incoming data including a plurality of data symbols and a data integrity marker is received. At least one extra symbol is used to mark the incoming data as error-free data or erroneous data (i.e., poison) based on the data integrity marker. ECC may be created to protect the data symbols. The ECC may include a plurality of check symbols, a plurality of unused symbols and the at least one extra symbol. In another embodiment, an error marker may be propagated from a single ECC word to all ECC words of data block (e.g., a cache line, a page, and the like) to prevent errors due to corruption of the error marker caused by faulty memory in the erroneous ECC word.
Abstract:
A method and device are described for encoding erroneous data in an error correction code (ECC) protected memory. In one embodiment, incoming data including a plurality of data symbols and a data integrity marker is received. At least one extra symbol is used to mark the incoming data as error-free data or erroneous data (i.e., poison) based on the data integrity marker. ECC may be created to protect the data symbols. The ECC may include a plurality of check symbols, a plurality of unused symbols and the at least one extra symbol. In another embodiment, an error marker may be propagated from a single ECC word to all ECC words of data block (e.g., a cache line, a page, and the like) to prevent errors due to corruption of the error marker caused by faulty memory in the erroneous ECC word.
Abstract:
An apparatus and method for supporting communication during error handling in a computing system. A computing system includes a first partition and a second partition, each capable of performing error management based on a respective machine check architecture (MCA). When a host processor in the first partition detects an error that requires information from processor cores of the second partition, the host processor generates an access request with a target address pointing to a storage location in a memory of the second partition, not the first partition. When the host processor receives the requested error log information from the second partition, the host processor completes processing of the error. To support the host processor in generating the target address for the access request, during an earlier bootup operation, the second partition communicates the hardware topology of the second partition to the host processor.
Abstract:
Systems, apparatuses, and methods for implementing a hardware enforcement mechanism to enable platform-specific firmware visibility into an error state ahead of the operating system are disclosed. A system includes at least one or more processor cores, control logic, a plurality of registers, platform-specific firmware, and an operating system (OS). The control logic allows the platform-specific firmware to decide if and when the error state is visible to the OS. In some cases, the platform-specific firmware blocks the OS from accessing the error state. In other cases, the platform-specific firmware allows the OS to access the error state such as when the OS needs to unmap a page. The control logic enables the platform-specific firmware, rather than the OS, to make decisions about the replacement of faulty components in the system.
Abstract:
In some embodiments, a method for improving reliability in a processor is provided. The method can include replicating input data for first and second lanes of a processor, the first and second lanes being located in a same cluster of the processor and the first and second lanes each generating a respective value associated with an instruction to be executed in the respective lane, and responsive to a determination that the generated values do not match, providing an indication that the generated values do not match.
Abstract:
An apparatus and method for supporting communication during error handling in a computing system. A computing system includes a first partition and a second partition, each capable of performing error management based on a respective machine check architecture (MCA). The first partition includes a host processor that executes an exception handler for managing reported errors. A message converter unit of the second partition assists in generating messages based on detected errors in the second partition. The message converter unit receives requests from hardware components of the second partition for handling errors and translates MCA addresses between the first partition and the second partition. To support the message converter unit, during an earlier bootup operation, the second partition communicates the hardware topology of the second partition to the host processor, and the host processor sends address translation information.
Abstract:
An apparatus and method for supporting communication during error handling in a computing system. A computing system includes a first partition and a second partition, each capable of performing error management based on a respective machine check architecture (MCA). The first partition includes a host processor that executes an exception handler for managing reported errors. A message converter unit of the second partition assists in generating messages based on detected errors in the second partition. The message converter unit receives requests from hardware components of the second partition for handling errors and translates MCA addresses between the first partition and the second partition. To support the message converter unit, during an earlier bootup operation, the second partition communicates the hardware topology of the second partition to the host processor, and the host processor sends address translation information.
Abstract:
An apparatus and method for supporting communication during error handling in a computing system. A computing system includes a first partition and a second partition, each capable of performing error management based on a respective machine check architecture (MCA). When a host processor in the first partition detects an error that requires information from processor cores of the second partition, the host processor generates an access request with a target address pointing to a storage location in a memory of the second partition, not the first partition. When the host processor receives the requested error log information from the second partition, the host processor completes processing of the error. To support the host processor in generating the target address for the access request, during an earlier bootup operation, the second partition communicates the hardware topology of the second partition to the host processor.
Abstract:
Systems, apparatuses, and methods for implementing a hardware enforcement mechanism to enable platform-specific firmware visibility into an error state ahead of the operating system are disclosed. A system includes at least one or more processor cores, control logic, a plurality of registers, platform-specific firmware, and an operating system (OS). The control logic allows the platform-specific firmware to decide if and when the error state is visible to the OS. In some cases, the platform-specific firmware blocks the OS from accessing the error state. In other cases, the platform-specific firmware allows the OS to access the error state such as when the OS needs to unmap a page. The control logic enables the platform-specific firmware, rather than the OS, to make decisions about the replacement of faulty components in the system.