Abstract:
An integrated circuit device can include a plurality of access transistors formed in a substrate having control terminals connected to word lines that extend in a first direction; a plurality of two-terminal programmable impedance elements formed over the substrate; at least one conductive plate structure formed on and having a common conductive connection to, the programmable impedance elements, and extending in at least the first direction; a plurality of storage contacts that extend from a first current terminal of each access transistor to one of the programmable impedance elements; a plurality of bit lines formed over the at least one conductive plate structure, the bit lines extending in a second direction different from the first direction; and a plurality of bit line contacts that extend from a second current terminal of each access transistor through openings in the at least one plate structure to one of the bit lines.
Abstract:
A storage element can include a bottom structure having at least one edge formed by a top surface and a side surface; a programmable layer, programmable between at least two different impedance states, and formed over the at least one edge and in contact with a portion of the bottom structure; an insulating layer that extends above the top surface of the bottom structure having an opening to the bottom structure formed therein, the opening having sloped sides; and at least one top layer formed within the opening and in contact with the programmable layer. Methods of making such a storage element are also disclosed.
Abstract:
An integrated circuit device can include a plurality of access transistors formed in a substrate having control terminals connected to word lines that extend in a first direction; a plurality of two-terminal programmable impedance elements formed over the substrate; at least one conductive plate structure formed on and having a common conductive connection to, the programmable impedance elements, and extending in at least the first direction; a plurality of storage contacts that extend from a first current terminal of each access transistor to one of the programmable impedance elements; a plurality of bit lines formed over the at least one conductive plate structure, the bit lines extending in a second direction different from the first direction; and a plurality of bit line contacts that extend from a second current terminal of each access transistor through openings in the at least one plate structure to one of the bit lines.
Abstract:
A method can include forming a bottom structure with a top surface and a side surface that form at least one edge; forming an opening with sloped sides through at least one insulating layer to expose at least a portion of the top surface of the bottom structure; forming a programmable layer over the at least one edge, in contact with the sloped sides of the opening and the top surface of the bottom structure; and forming a top layer over the programmable layer and opening; wherein the programmable layer is programmable between at least two different impedance states.
Abstract:
A memory element programmable between different impedance states can include a first electrode; a switching layer formed in contact with the first electrode and including at least one metal oxide; and a buffer layer in contact with the switching layer. A buffer layer can include a first metal, tellurium, a third element, and a second metal distributed within the buffer layer. A second electrode can be in contact with the buffer layer.