Abstract:
A measurement apparatus and method for determining a substrate grid describing a deformation of a substrate prior to exposure of the substrate in a lithographic apparatus configured to fabricate one or more features on the substrate. Position data for a plurality of first features and/or a plurality of second features on the substrate is obtained. Asymmetry data for at least a feature of the plurality of first features and/or the plurality of second features is obtained. The substrate grid based on the position data and the asymmetry data is determined. The substrate grid and asymmetry data are passed to the lithographic apparatus for controlling at least part of an exposure process to fabricate one or more features on the substrate.
Abstract:
An alignment apparatus includes an illumination system configured to direct one or more illumination beams towards an alignment target and receive the diffracted beams from the alignment target. The alignment apparatus also includes a self-referencing Interferometer configured to generate two diffraction sub-beams, wherein the two diffraction sub-beams are orthogonally polarized, rotated 180 degrees with respect to each other around an alignment axis, and spatially overlapped. The alignment apparatus further includes a beam analyzer configured to generate interference between the overlapped components of the diffraction sub-beams and produce two orthogonally polarized optical branches, and a detection system configured to determine a position of the alignment target based on light intensity measurement of the optical branches, wherein the measured light intensity is temporally modulated by a phase modulator.
Abstract:
A method of characterizing a deformation of a plurality of substrates is described. The method includes: measuring, for a plurality of n different alignment measurement parameters λ and for a plurality of substrates, a position of the alignment marks; determining a positional deviation as the difference between the n alignment mark position measurements and a nominal alignment mark position; grouping the positional deviations into data sets; determining an average data set; subtracting the average data set from the data sets to obtain a plurality of variable data sets; performing a blind source separation method on the variable data sets, thereby decomposing the variable data sets into a set of eigenwafers representing principal components of the variable data sets; and subdividing the set of eigenwafers into a set of mark deformation eigenwafers and a set of substrate deformation eigenwafers.
Abstract:
Position and curvature information of a patterning device may be determined directly from the patterning device and controlled based on the determined information. In an embodiment, a lithographic apparatus includes a position determining system operative to determine a relative position of the patterning device. The patterning device may be configured to create a patterned radiation beam from a radiation beam incident on a major surface of the patterning device. The patterning device may have a side surface having an edge in common with the major surface. The position determining system may include an interferometer operative to transmit light to the side surface and to receive the transmitted light after the transmitted light has been reflected at the side surface. The position determining system is operative to determine a quantity representative of the relative position of the patterning device from the received reflected transmitted light.
Abstract:
A method to determine the usefulness of an alignment mark of a first pattern in transferring a second pattern to a substrate relative to the first pattern already present on the substrate includes measuring the position of the alignment mark, modeling the position of the alignment mark, determining the model error between measured and modeled position, measuring a corresponding overlay error between first and second pattern and comparing the model error with the overlay error to determine the usefulness of the alignment mark. Subsequently this information can be used when processing next substrates thereby improving the overlay for these substrates. A lithographic apparatus and/or overlay measurement system may be operated in accordance with the method.
Abstract:
In order to improve the throughput performance and/or economy of a measurement apparatus, the present disclosure provides a metrology apparatus including: a first measuring apparatus; a second measuring apparatus; a first substrate stage configured to hold a first substrate and/or a second substrate; a second substrate stage configured to hold the first substrate and/or the second substrate; a first substrate handler configured to handle the first substrate and/or the second substrate; and a second substrate handler configured to handle the first substrate and/or the second substrate, wherein the first substrate is loaded from a first, second or third FOUP, wherein the second substrate is loaded from the first, second or third FOUP, wherein the first measuring apparatus is an alignment measuring apparatus, and wherein the second measuring apparatus is a level sensor, a film thickness measuring apparatus or a spectral reflectance measuring apparatus.
Abstract:
A method for determining one or more optimized values of an operational parameter of a sensor system configured for measuring a property of a substrate. The method includes: determining a quality parameter for a plurality of substrates; determining measurement parameters for the plurality of substrates obtained using the sensor system for a plurality of values of the operational parameter; comparing a substrate to substrate variation of the quality parameter and a substrate to substrate variation of a mapping of the measurement parameters; and determining the one or more optimized values of the operational parameter based on the comparing.
Abstract:
Position and curvature information of a patterning device may be determined directly from the patterning device and controlled based on the determined information. In an embodiment, a lithographic apparatus includes a position determining system operative to determine a relative position of the patterning device. The patterning device may be configured to create a patterned radiation beam from a radiation beam incident on a major surface of the patterning device. The patterning device may have a side surface having an edge in common with the major surface. The position determining system may include an interferometer operative to transmit light to the side surface and to receive the transmitted light after the transmitted light has been reflected at the side surface. The position determining system is operative to determine a quantity representative of the relative position of the patterning device from the received reflected transmitted light.
Abstract:
In a lithographic process in which a series of substrates are processed in different contexts, object data (such as performance data representing overlay measured on a set of substrates that have been processed previously) is received. Context data represents one or more parameters of the lithographic process that vary between substrates within the set. By principal component analysis or other statistical analysis of the performance data, the set of substrates are partitioned into two or more subsets. The first partitioning of the substrates and the context data are used to identify one or more relevant context parameters, being parameters of the lithographic process that are observed to correlate most strongly with the first partitioning. The lithographic apparatus is controlled for new substrates by reference to the identified relevant context parameters. Embodiments with feedback control and feedforward control are described.
Abstract:
A method for determining one or more optimized values of an operational parameter of a sensor system configured for measuring a property of a substrate is disclosed the method including: determining a quality parameter for a plurality of substrates; determining measurement parameters for the plurality of substrates obtained using the sensor system for a plurality of values of the operational parameter; comparing a substrate to substrate variation of the quality parameter and a substrate to substrate variation of a mapping of the measurement parameters; and determining the one or more optimized values of the operational parameter based on the comparing.