Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
Transparent structures for portions of electronic device housings are disclosed. The transparent structures are formed from multiple layers of transparent (optically clear) materials. The multiple layers can include at least an outer glass layer and one or more other transparent layers that can be either glass or polymer layers. The multiple layers can be bonded together with one or more lamination layers. Accordingly, multi-layer transparent structures that are formed from multiple layers bonded together are able to be not only thin but also sufficiently strong and resistant to damage. The multi-layer transparent structures are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
Abstract:
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.
Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
Transparent structures for portions of electronic device housings are disclosed. The transparent structures are formed from multiple layers of transparent (optically clear) materials. The multiple layers can include at least an outer glass layer and one or more other transparent layers that can be either glass or polymer layers. The multiple layers can be bonded together with one or more lamination layers. Accordingly, multi-layer transparent structures that are formed from multiple layers bonded together are able to be not only thin but also sufficiently strong and resistant to damage. The multi-layer transparent structures are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
An electronic device may have a signal cable formed from a flexible printed circuit. A service loop may be formed in the signal cable. The bend may be formed in a desired location on the flexible printed circuit by contraction of an elastic member having ends attached to the flexible printed circuit. The elastic member may be conductive to carry signals and provide shielding. Structures may be attached to the flexible printed circuit to promote bending in a desired location and direction. A crease or other bending promotion feature may be applied to the flexible printed circuit at a desired bend location. Overbending prevention structures such as overmolded elastomeric structures may be applied to the flexible printed circuit at the bend. Integral strain relief features may prevent overbending of the flexible printed circuit upon exiting the elastomeric structures. Overmolded structures may serve as protective bumpers.
Abstract:
An electronic device may include electronic device structures that are attached with a moisture and light curable adhesive. To assemble the electronic device, adhesive may be dispensed onto a first electronic device structure. An attachment structure may then be used to attach a second electronic device structure to the first electronic device structure. The electronic device may be tested with testing equipment. If the electronic device needs to be reworked, a separation tool may be used to separate the first and second electronic device structures. After separating the structures, residual moisture and light curable adhesive on the structures may be exposed to light to ensure that the moisture and light curable adhesive is fully cured. The moisture and light curable adhesive may then be removed without leaving any residue on the electronic device housing structures. The electronic device structures may include an electronic device housing and a cover glass.
Abstract:
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.