Abstract:
Systems and methods for providing localized tactile output and systems and methods for obtaining localized physical characteristic information are disclosed. An electronic device can include a friction transducer configured to augment and/or detect friction between a surface of an electronic device and an object in contact with that electronic device. The electronic device may also include a force transducer configured to detect the force with which an object contacts a display. The force transducer may also provide mechanical output. The electronic device can also include a thermal transducer to augment and/or detect the temperature of various locations on a display.
Abstract:
An electronic device contains electrical circuits. The circuits may include circuitry on printed circuit boards and components such as a touch screen display and buttons. Signal paths for routing signals between the electrical circuits may be formed from metal traces on flexible printed circuit cables. The flexible printed circuit cables may be bent around one or more bend axes. A flexible printed circuit cable may be formed from a flexible polymer substrate having one or more layers of polymer. Upper and lower ground layers may be supported by the flexible polymer substrate. The metal traces for the signal paths may lie between the upper and lower ground layers. Longitudinal slits within the flexible printed circuit may be formed that pass through the ground layers and the polymer layers. Vias may be formed that couple the ground layers together. The vias may run along the edges of the slits.
Abstract:
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.
Abstract:
Systems and methods for providing localized tactile output and systems and methods for obtaining localized physical characteristic information are disclosed. An electronic device can include a friction transducer configured to augment and/or detect friction between a surface of an electronic device and an object in contact with that electronic device. The electronic device may also include a force transducer configured to detect the force with which an object contacts a display. The force transducer may also provide mechanical output. The electronic device can also include a thermal transducer to augment and/or detect the temperature of various locations on a display.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include at least a single piece housing. The single piece housing can be machined from a single billet of material, such as a billet of aluminum. The single piece housing can include ledges with a surface receiving a trim bead and a cover. Corner brackets can be attached to the single piece housing to improve the damage resistance of the housing.
Abstract:
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.
Abstract:
Electronic devices may include displays. A display may include backlight structures that generate light and display layers that generate images using the generated light. An electronic device may include an opaque flexible printed circuit that is wrapped around one or more edges of the backlight structures. The opaque flexible printed circuit may prevent light from the backlight structures from reaching other electronic components or escaping from the device. The opaque flexible printed circuit may include signal lines that communicate signals between a printed circuit board and the display. The opaque flexible printed circuit may be a layer of the printed circuit board that extends from an edge of the printed circuit board. The printed circuit board may include an additional flexible extended printed circuit layer that wraps around a surface of the printed circuit board and forms a portion of a conductive shield over that surface.
Abstract:
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.
Abstract:
Pressure indicator pressure sensitive adhesive may contain microspheres that burst and release indicator when subjected to pressure and thereby produce a detectable indication of how much pressure has been applied when forming an adhesive joint between opposing structures. Electronic device structures can be assembled using the pressure indicator pressure sensitive adhesive. A camera or other sensor may monitor joint formation. The camera can gather infrared image data, visible light image data, or ultraviolet light image data. Sensor data such as magnetic or ultrasonic sensor data can also be collected on an adhesive joint. Joint inspection can be performed on test structures and production structures and corresponding adjustments made to the joint formation process. Positioners and other equipment that compresses the pressure indicator pressure sensitive adhesive can be adjusted in real time or calibrated using information about the condition of the pressure indicator pressure sensitive adhesive.