Abstract:
Provided is a magnetic memory device. The magnetic memory device includes a first magnetization layer, a tunnel barrier disposed on the first magnetization layer, a second magnetization layer disposed on the tunnel barrier, and a spin current assisting layer disposed on at least a portion of a sidewall of the second magnetization layer.
Abstract:
A substrate processing apparatus including a chamber accommodating a substrate; a substrate support in the chamber, the substrate support supporting the substrate; a gas injector to inject an oxidizing gas for oxidizing a metal layer to be disposed on the substrate; a cooler under the substrate to cool the substrate; a target mount disposed on the substrate, the target mount including a target for performing a sputtering process; and a blocker between the target and the gas injector, the blocker shielding the target from the oxidizing gas injected from the gas injector.
Abstract:
Magnetic memory devices may include a substrate, a circuit device on the substrate, a plurality of lower electrodes electrically connected to the circuit device, a magnetic tunnel junction (MTJ) structure commonly provided on the plurality of the lower electrodes, and a plurality of upper electrodes on the MTJ structure. The MTJ structure may include a plurality of magnetic material patterns and a plurality of insulation material patterns separating the magnetic material patterns from each other.
Abstract:
Provided are magnetoresistive elements, memory devices including the same, and an operation methods thereof. A magnetoresistive element may include a free layer, and the free layer may include a plurality of regions (layers) having different properties. The free layer may include a plurality of regions (layers) having different Curie temperatures. The Curie temperature of the free layer may change regionally or gradually away from the pinned layer. The free layer may include a first region having ferromagnetic characteristics at a first temperature and a second region having paramagnetic characteristics at the first temperature. The first region and the second region both may have ferromagnetic characteristics at a second temperature lower than the first temperature. The effective thickness of the free layer may change with temperature.
Abstract:
Magnetic memory devices include a magnetoresistive cell including a free layer having a variable magnetization direction and a pinned layer having a fixed magnetization direction, a bit line on the magnetoresistive cell and including a spin Hall effect material layer exhibiting a spin Hall effect and contacting the free layer; and a lower electrode under the magnetoresistive cell. A voltage is applied between the bit line and the lower electrode so that current passes through the magnetoresistive cell.
Abstract:
Provided is a tire pressure sensor (TPS) of a tire pressure monitoring system (TPMS). The TPS includes a detachable and angle-adjustable tire valve coupled to the front side of a tire pressure sensor housing. A holder bracket having a tire valve insertion hole is at the front side, and an insertion head inserted into the valve insertion hole is at an end of the tire valve. Accordingly, the angle of the tire valve is freely controlled, allowing compatible use regardless of the shape or size of wheels of cars and commercial vehicles. Thus, manufacturing costs can be greatly reduced, thereby obtaining superior competitiveness over competitors' products. Furthermore, air leakage through a wheel valve hole can be effectively prevented against high speed rotation and inertia motion caused by the high speed rotation during the driving of a vehicle.
Abstract:
A magnetoresistive random access memory device includes a free layer, a tunnel barrier layer, an insulation barrier layer, a pinned layer, and a vertical polarizer structure. The tunnel barrier layer and the insulation barrier layer directly contacts different surfaces of the free layer. The pinned layer structure contacts the tunnel barrier layer and includes at least one pinned layer. The vertical polarizer structure contacts the insulation barrier layer and includes a plurality of magnetization multi-layered structures sequentially stacked. Each magnetization multi-layered structure includes a non-magnetic layer and a magnetic layer sequentially stacked. The pinned layer and the magnetic layer have magnetization directions anti-parallel to each other.
Abstract:
Provided is a magnetic memory device. The magnetic memory device includes a first magnetization layer, a tunnel barrier disposed on the first magnetization layer, a second magnetization layer disposed on the tunnel barrier, and a spin current assisting layer disposed on at least a portion of a sidewall of the second magnetization layer.
Abstract:
Magnetic memory devices may include a substrate, a circuit device on the substrate, a plurality of lower electrodes electrically connected to the circuit device, a magnetic tunnel junction (MTJ) structure commonly provided on the plurality of the lower electrodes, and a plurality of upper electrodes on the MTJ structure. The MTJ structure may include a plurality of magnetic material patterns and a plurality of insulation material patterns separating the magnetic material patterns from each other.
Abstract:
Magnetoresistive elements, and memory devices including the same, include a free layer having a changeable magnetization direction, a pinned layer facing the free layer and having a fixed magnetization direction, and an auxiliary element on a surface of the pinned layer. The auxiliary element has a width smaller than a width of the pinned layer, and a magnetization direction fixed to a direction the same as a direction of the fixed magnetization direction of the pinned layer.