Abstract:
A memory device using a spin hall effect, and methods of manufacturing and operating the memory device, include applying a first operational current to a bit line of the memory device such that a spin current is applied to a magnetic tunnel junction (MTJ) cell coupled to the bit line due to a material in the bit line, wherein the bit line is electrically connected to a word line via the MTJ cell, and the word line intersects the bit line.
Abstract:
Oscillators and method of operating the same are provided, the oscillators include a magnetic layer, and a magnetization fixing element configured to fix a magnetization direction of the magnetic layer. The oscillators generate a signal by using precession of a magnetic moment of the magnetic layer.
Abstract:
Magnetoresistive structures, magnetic random-access memory devices including the same, and methods of manufacturing the magnetoresistive structure, include a first magnetic layer having a magnetization direction that is fixed, a second magnetic layer corresponding to the first magnetic layer, wherein a magnetization direction of the second magnetic layer is changeable, and a magnetoresistance (MR) enhancing layer and an intermediate layer both between the first magnetic layer and the second magnetic layer.
Abstract:
A storage node of a magnetic memory device includes: a lower magnetic layer, a tunnel barrier layer formed on the lower magnetic layer, and a free magnetic layer formed on the tunnel barrier. The free magnetic layer has a magnetization direction that is switchable in response to a spin current. The free magnetic layer has a cap structure surrounding at least one material layer on which the free magnetic layer is formed.
Abstract:
Oscillators and methods of manufacturing and operating an oscillator are provided, the oscillators include a base free layer having a variable magnetization direction, and at least one oscillation unit on the base free layer. The oscillation unit may include a free layer element contacting the base free layer and having a width less than a width of the base free layer, a pinned layer element separated from the free layer element, and a separation layer element between the free layer element and the pinned layer element. A plurality of oscillation units may be arranged on the base free layer.
Abstract:
An information storage device includes a magnetic track and a magnetic domain wall moving unit. The magnetic track has a plurality of magnetic domains and a magnetic domain wall between each pair of adjacent magnetic domains. The magnetic domain wall moving unit is configured to move at least the magnetic domain wall. The information storage device further includes a magneto-resistive device configured to read information recorded on the magnetic track. The magneto-resistive device includes a pinned layer, a free layer and a separation layer arranged there between. The pinned layer has a fixed magnetization direction. The free layer is disposed between the pinned layer and the magnetic track, and has a magnetization easy axis, which is non-parallel to the magnetization direction of the pinned layer.
Abstract:
Oscillators and a method of operating the same are provided, the oscillators include at least one oscillation device including a first magnetic layer having a magnetization direction that is variable, a second magnetic layer having a pinned magnetization direction, and a non-magnetic layer disposed between the first magnetic layer and the second magnetic layer. The oscillation device is configured to generate a signal having a set frequency. The oscillators further include a driving transistor having a drain connected to the at least one oscillation device, and a gate to which a control signal for controlling driving of the oscillation device is applied.
Abstract:
An oscillator includes: a plurality of free layers and a non-magnetic layer disposed between the plurality of free layers. Each of the plurality of free layers has perpendicular magnetic anisotropy or in-plane magnetic anisotropy. Magnetization directions of the free layers are periodically switched such that a signal within a given frequency band oscillates.
Abstract:
An information storage device includes a magnetic structure having a buffer track and a plurality of storage tracks connected to the buffer track. A write/read unit is disposed on the magnetic structure, and a plurality of switching devices are respectively connected to the buffer track, the plurality of storage tracks, and the write/read unit. The switching devices that are respectively connected to the buffer track and the storage tracks. The information storage device further includes a circuit configured to supply current to at least one of the magnetic structure and the write/read unit.
Abstract:
A tri-gated molecular field effect transistor includes a gate electrode formed on a substrate and having grooves in a source region, a drain region and a channel region, and at least one molecule inserted between the source and drain electrodes in the channel region. The effects of the gate voltage on electrons passing through the channel can be maximized, and a variation gain of current supplied between the source and drain electrodes relative to the gate voltage can be greatly increased. Thus, a molecular electronic circuit having high functionality and reliability can be obtained.