Abstract:
The disclosed invention relates to a method for restarting a synthesis gas conversion process which has stopped. The synthesis gas conversion process may be conducted in a conventional reactor or a microchannel reactor. The synthesis gas conversion process may comprise a process for converting synthesis gas to methane, methanol or dimethyl ether. The synthesis gas conversion process may be a Fischer-Tropsch process.
Abstract:
The invention providing methods of loading and unloading particulate from micorchannels in apparatus that contains multiple microchannels, typically apparatus that is designed to operate with hundreds or thousands of particulate-containing microchannels. Aligning a sonicating head at one end of a set of microchannels provides a particularly effective mode for densifying particulate in microchannels.
Abstract:
The present invention provides methods, systems and apparatus in which one fluid passes through an orifice or orifices and mixes with another fluid as it flows through a microchannel.
Abstract:
The present invention provides an improved process for removing heat from an exothermic reaction. In particular, the present invention provides a process wherein heat can be removed from multiple reaction trains using a common coolant system.
Abstract:
This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
Abstract:
A process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms comprises: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. A supported catalyst comprises Co, and a microchannel reactor comprises at least one process microchannel and at least one adjacent heat exchange zone.
Abstract:
A new electroless plating approach to generate a porous metallic coating is described in which a metal is electrolessly deposited on a surface. Microparticles in the metal are removed to leave pores in the metal coating. Another method of forming electroless coatings is described in which a blocking ligand is attached to the surface, followed by a second coating step. The invention includes coatings and coated apparatus formed by methods of the invention. The invention also includes catalyst structures comprising a dense substrate and a porous metal adhered to the dense substrate, which is further characterized by one or more of the specified features.
Abstract:
Provided is a process and apparatus for exchanging heat energy between three or more streams in a millichannel apparatus, which millichannel apparatus may comprise a heat exchanger which may be integrated with a millichannel reactor to form an integrated millichannel processing unit. The combining of a plurality of integrated millichannel apparatus to provide the benefits of large-scale operation is enabled. In particular, the millichannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
Abstract:
The disclosed invention relates to a process for conducting a Fischer-Tropsch reaction, comprising flowing a reactant mixture comprising fresh synthesis gas and tail gas in a microchannel reactor in contact with a catalyst to form at least one hydrocarbon product, the catalyst being derived from a catalyst precursor comprising cobalt and a surface modified catalyst support.
Abstract:
The invention providing methods of loading and unloading particulate from micorchannels in apparatus that contains multiple microchannels, typically apparatus that is designed to operate with hundreds or thousands of particulate-containing microchannels. Aligning a sonicating head at one end of a set of microchannels provides a particularly effective mode for densifying particulate in microchannels.