摘要:
A method for preparing a device having a film on a substrate is disclosed. In the method, a film is deposited on a substrate. The film includes a first and a second metal. The first and the second metals in the film are converted to an intermetallic compound using microwave radiation. One example device prepared by the method includes a silicon substrate and a film on the substrate, wherein the film includes semiconducting copper germanide as the intermetallic compound.
摘要:
A method for preparing a device having a film on a substrate is disclosed. In the method, a film is deposited on a polymeric substrate. The film includes at least one metal. A metal in the film is converted to a metal oxide using microwave radiation. One example device prepared by the method includes a polyethylene napthalate substrate and a film on the substrate, wherein the film includes a semiconducting copper oxide and silver as a dopant.
摘要:
A method for transferring a monocrystalline, thin layer from a first substrate onto a second substrate involves deposition of a doped semiconductor layer on a substrate and epitaxial growth of a thin, monocrystalline, semiconductor layer on the doped layer. After bonding the thin epitaxial monocrystalline semiconductor layer to a second substrate, hydrogen is introduced into the doped layer, and the thin layer is cleaved and transferred to the second substrate, with the cleaving controlled to happen at the doped layer.
摘要:
In semiconductor integrated circuit and device fabrication interconnect metallization is accomplished by a clad Ag deposited on a SiO2 level on a Si surface. The clad Ag has a layer of an alloy of Ag and Al (5 atomic %) contacting the SiO2, a layer of substantially pure Ag and an outer layer of the Ag and Al alloy. The alloy improves adhesion to the SiO2, avoids agglomeration of the Ag, reduces or eliminates diffusion at the SiO2 surface, reduces electromigration and presents a passive exterior surface.
摘要:
A method for preparing a device having a film on a substrate is disclosed. In the method, a film is deposited on a substrate. The film includes a first and a second metal. The first and the second metals in the film are converted to an intermetallic compound using microwave radiation. One example device prepared by the method includes a silicon substrate and a film on the substrate, wherein the film includes semiconducting copper germanide as the intermetallic compound.
摘要:
An electronic apparatus uses a single crystalline silicon substrate disposed adjacent to a flexible substrate. The electronic apparatus may be a flexible flat panel display, or a flexible printed circuit board. The flexible substrate can be made from polymer, plastic, paper, flexible glass, and stainless steel. The flexible substrate is bonded to the single crystalline substrate using an ion implantation process. The ion implantation process involves the use of a noble gas such as hydrogen, helium, xenon, and krypton. A plurality of semiconductor devices are formed on the single crystalline silicon substrate. The semiconductor devices may be thin film transistors for the flat panel display, or active and passive components for the electronic device.
摘要:
A method for transferring a monocrystalline, thin layer from a first substrate onto a second substrate involves epitaxial growth of a sandwich structure with a strained epitaxial layer buried below a monocrystalline thin layer, and lift-off and transfer of the monocrystalline thin layer with the cleaving controlled to happen within the buried strained layer in conjunction with the introduction of hydrogen.
摘要:
A method for preparing a device having a film on a substrate is disclosed. In the method, a film is deposited on a polymeric substrate. The film includes at least one metal. A metal in the film is converted to a metal oxide using microwave radiation. One example device prepared by the method includes a polyethylene napthalate substrate and a film on the substrate, wherein the film includes a semiconducting copper oxide and silver as a dopant.
摘要:
An article holding apparatus comprises a telescoping support structure, a clip device and a mounting structure. The clip device is attached to a first end region of the telescoping support structure. The mounting structure is attached to a second end region of the telescoping support structure. The telescoping support structure is extendable from a fully retracted length to a length of more than 2 times the fully retracted length. The clip device is specifically-configured for compressively holding articles made from one or more relatively thin sheets of material.