摘要:
An object of the invention is to suppress deposition of ash in a wall-flow particulate filter while curtailing drops in a trapping rate of PM. To attain the above object, the invention provides a wall-flow particulate filter delimited by porous partition walls having pores of a size that allows ash and ash aggregates to pass therethrough. In the filter, a coat layer having pores smaller than the pores of the partition walls is provided, at a region of the partition walls, from an upstream end thereof up to a position before a downstream end thereof.
摘要:
An object of the present invention is to suppress a reduction in a NOx purification ratio accompanying filter regeneration processing in an exhaust gas purification system for an internal combustion engine that includes a filter carrying an SCR catalyst. In the present invention, the temperature of the filter is increased following completion of the filter regeneration processing by increasing the temperature of exhaust gas discharged from the internal combustion engine, and in so doing, HC adhered to the filter is removed.
摘要:
A particulate filter arranged in an engine exhaust passage is provided with alternately arranged exhaust gas inflow and outflow passages and porous partition walls which separate these passages from each other. In each partition wall, a coated zone where a coated layer with an average pore size smaller than that of a partition wall substrate is used to cover the substrate surface and a non-coated zone downstream of the coated zone where the substrate surface is not covered by said coated layer, are defined, and the ash in the exhaust gas can pass through the partition wall in the non-coated zone. Judgment processing which judges if a particulate matter trapping rate of the particulate filter has fallen below an allowable lower limit value is performed. PM removal processing is performed when it is judged that the particulate matter trapping rate has fallen below the allowable lower limit value.
摘要:
A wall flow type particulate filter is arranged inside the exhaust passage of an internal combustion engine where combustion is performed under an excess of oxygen. The particulate filter carries a solid acid. The solid acid has an acid strength which is higher than the acid strength of sulfurous acid and lower than the acid strength of sulfuric acid. To remove the ash from the particulate filter, ash atomization processing for rendering the state of the particulate filter a state where the exhaust gas which flows into the particulate filter is lowered in concentration of oxygen and the particulate filter is raised in temperature is temporarily performed.
摘要:
An exhaust gas recirculation device of an internal combustion engine (1) including a low-pressure EGR passage (20), a high-pressure EGR passage (21), a low-pressure EGR valve (23) and a high-pressure EGR valve (24) further includes an air-fuel ratio sensor (12) that is disposed in the exhaust passage (4) upstream of the position of its connection with the low-pressure EGR passage (20). In the case where a predetermined fuel-cut condition is satisfied, an ECU (30) estimates the flow amounts of exhaust gas flowing in the low-pressure EGR passage (20) and the high-pressure EGR passage (21), on the basis of the oxygen concentrations acquired by the air-fuel ratio sensor (12) at timings at which the exhaust gases recirculated into the intake passage (3) via the low-pressure EGR passage (20) and via the high-pressure EGR passage (21) reach the air-fuel ratio sensor (12), respectively.
摘要:
An exhaust purification system of an internal combustion engine of the present invention comprises a silver-alumina-based catalyst device arranged in the engine exhaust system. When a temperature of the silver-alumina-based catalyst device becomes a second set temperature T2 lower than a first set temperature T1 at which the silver-alumina-based catalyst device releases NO2, and releases NO, the silver-alumina-based catalyst device is heated such that a temperature elevation rate thereof is increased to make the temperature T of the silver-alumina-based catalyst device be a third set temperature T3 between the first set temperature T1 and the second set temperature T2.
摘要:
An exhaust gas control apparatus includes: a fuel supply portion that is provided so as to supply fuel to a portion of an exhaust passage, which is upstream of an exhaust gas purification member provided in the exhaust passage; a heating portion that is disposed between the fuel supply portion and the exhaust gas purification member; and a control portion that controls an amount of electric power that is supplied to the heating portion, based on an exhaust gas temperature and an exhaust gas flow rate.
摘要:
A soot discharge amount is calculated by multiplying a “steady discharge amount” by a “transient correction value.” The steady discharge amount is a soot discharge amount in a steady operation state, and is acquired through table search. For each of a plurality of factors which affect the soot discharge amount, a steady value (value obtained through table search) of the factor and a transient value (current value) of the factor are substituted for a characteristic equation which represents a change in the soot discharge amount with the value of the factor, whereby a steady characteristic value and a transient characteristic value are acquired. The “ratio between the steady characteristic value and the transient characteristic value” is then calculated for each factor. The transient correction value is obtained by multiplying together all values of the “ratio between the steady characteristic value and the transient characteristic value” obtained for the factors.
摘要:
A soot generation amount estimation apparatus obtains a generation speed of a precursor of soot (accordingly, the concentration of the precursor) in consideration of formation of the precursor from fuel, thermal decomposition of the formed precursor, and formation of soot from the formed precursor, and estimates a generation speed of soot (accordingly, the concentration of soot (the generation amount of soot)) in consideration of formation of soot from the precursor, which depends on the concentration of the precursor, and oxidation of the formed soot. The apparatus employs a reaction model in which the reaction process in which soot is generated from fuel is divided into two steps; i.e., a reaction process in which a precursor is generated from fuel and a reaction process in which soot is generated from the precursor. Thus, phenomena, such as a “delay in soot generation” in the reaction process in which soot is generated from fuel, can be accurately simulated.
摘要:
A technique is provided which, in an exhaust gas recirculation apparatus for an internal combustion engine, can calculate a low-pressure EGR rate and a high-pressure EGR rate in an accurate manner, and control the flow rates of both a low pressure EGR passage and a high pressure EGR passage in a closed-loop control manner, thereby to make the temperature of intake air and a supercharging pressure stable and to suppress the deterioration of exhaust emissions as well as the deterioration of power performance. The low pressure EGR rate, representative of the proportion of an amount of low pressure EGR gas to an amount of intake air sucked into the internal combustion engine, and the high pressure EGR rate, representative of the proportion of an amount of high pressure EGR gas to the amount of intake air, are calculated by using a CO2 concentration in an intake passage at a location downstream of a connection portion of the low pressure EGR passage and upstream of a connection portion of the high pressure EGR passage, a CO2 concentration in the intake passage at a location downstream the connection portion of the high pressure EGR passage, and a CO2 concentration of an exhaust gas discharged from the internal combustion engine (S103). The low pressure EGR rate and the high pressure EGR rate to be calculated are controlled to individual target values, respectively (S104).