Abstract:
Stress-inducing structures, methods, and materials are disclosed. In one embodiment, an isolation region includes an insulating material in a lower portion of a trench formed in a workpiece and a stress-inducing material disposed in a top portion of the trench over the insulating material.
Abstract:
Structures and methods of forming self aligned silicided contacts are disclosed. The structure includes a gate electrode disposed over an active area, a liner disposed over the gate electrode and at least a portion of the active area, an insulating layer disposed over the liner. A first contact plug is disposed in the insulating layer and the liner, the first contact plug disposed above and in contact with a portion of the active area, the first contact plug including a first conductive material. A second contact plug is disposed in the insulating layer and the liner, the second contact plug disposed above and in contact with a portion of the gate electrode, the second contact plug includes the first conductive material. A contact material layer is disposed in the active region, the contact material layer disposed under the first contact plug and includes the first conductive material.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
Abstract:
Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
Abstract:
Structures and methods of forming self aligned silicided contacts are disclosed. The structure includes a gate electrode disposed over an active area, a liner disposed over the gate electrode and at least a portion of the active area, an insulating layer disposed over the liner. A first contact plug is disposed in the insulating layer and the liner, the first contact plug disposed above and in contact with a portion of the active area, the first contact plug including a first conductive material. A second contact plug is disposed in the insulating layer and the liner, the second contact plug disposed above and in contact with a portion of the gate electrode, the second contact plug includes the first conductive material. A contact material layer is disposed in the active region, the contact material layer disposed under the first contact plug and includes the first conductive material.
Abstract:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
Abstract:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
Abstract:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
Abstract:
A method of making a semiconductor interconnect is disclosed. A semiconductor body on which a transistor comprising a doped region is formed is provided. A dielectric region is formed over the doped region, and a contact hole is formed in the dielectric to expose the doped region. The contact hole is cleaned and a first layer of metal is formed over a bottom and sidewalls of the contact hole. The first layer of metal is thinned so that the thickness of the first layer of metal on the sidewalls is made more uniform. A barrier is formed over the first layer of metal and the contact hole is filled with conductive material.