摘要:
Oxidation resistant bioprosthetic tissues and oxidation resistant bioprosthetic heart valve leaflets are described. Also provided are methods for preparing the oxidation resistant bioprosthetic tissues and bioprosthetic heart valve leaflets, and methods for preventing oxidative degeneration in bioprosthetic tissues, including immobilizing covalently an effective amount of an antioxidant to the bioprosthetic tissue.
摘要:
A prodrug according to formula (I) wherein R2 is a residue of a drug, said drug having a hydroxyl group by which the COOR2 group is formed; Z is O or NH; m is 0 or 1; and R3 is an organic moiety comprising a lipophilic group or a residue of a polymer, provided that Z is 0 if the polymer is carboxymethyl dextran. A system includes a plurality of magnetic nanoparticles including a prodrug as described above, a stent and a source of uniform magnetic field capable of producing temporary magnetization of the stent and/or the magnetic nanoparticles. A method of treating a medical condition with a drug includes administering to a patient in need of the drug a prodrug as described above, the prodrug being capable of releasing the drug in the patient after the administration step.
摘要:
The present invention relates to a hybrid graft and methods of generating the hybrid graft. The hybrid graft comprises an exterior surface and a luminal surface. The luminal surface comprises a micropattern of grooves to which cells adhere and orient along. The exterior surface comprises electrospun microfibers wherein the microfibers provide mechanical properties to the graft. The hybrid graft is capable supporting endothelial cell attachment, endothelial cell alignment, cell proliferation, and maintaining their in vivo function. The graft of the invention can recapitulate the in vivo morphology and function of natural vascular endothelium.
摘要:
A treatment system includes a magnetic targeting catheter and a plurality of MNP. The MNP may include one or more magnetic field-responsive agents and one or more therapeutic agents. The catheter may include an inner shaft having at least one lumen and a fluid delivery balloon adapted to administer a fluid from the inner shaft into a space surrounding the catheter. An expandable mesh formed of a magnetizable material may surround the fluid delivery balloon. The catheter may further include one or more occlusion balloons for controlling blood flow through a vessel in which the catheter is placed. A method of treating a medical condition may include advancing a magnetic targeting catheter to a site, deploying an expandable mesh connected to the catheter, applying a magnetic field to the mesh and depositing a plurality of MNP or cells loaded with MNP near the mesh.
摘要:
Systems and methods for magnetic targeting of therapeutic particles are provided. Therapeutic particles comprise one or more magnetic or magnetizable materials and at least one therapeutic agent. Therapeutic particles are specifically targeted using uniform magnetic fields capable of magnetizing magnetizable materials, and can be targeted to particular locations in the body, or can be targeted for capture, containment, and removal. Also provided are bioresorbable nanoparticles prepared without the use of organic solvents, and methods for therapeutically using such bioresorbable nanoparticles.
摘要:
A water-soluble photo-activatable polymer including: a photo-activatable group adapted to be activated by an irradiation source and to form a covalent bond between the water-soluble photo-activatable polymer and a matrix having at least one carbon; a reactive group adapted to covalently react with a biomaterial for subsequent delivery of the biomaterial to a cell; a hydrophilic group; and a polymer precursor. A composition including a monomolecular layer of the water-soluble photo-activatable polymer and a matrix having at least one carbon, wherein the monomolecular layer is covalently attached to the matrix by a covalent bond between the photo-activatable group and the at least one carbon. The composition further includes a biomaterial having a plurality of active groups, wherein the biomaterial is covalently attached to the monomolecular layer by covalent bonding between the active groups and reactive groups. Also provided is a method for delivery of a biomaterial to a cell.
摘要:
A modified polyurethane including a lipid substituent pendant from at least one urethane nitrogen and/or at least one carbon atom of the modified polyurethane, methods of preparing modified polyurethanes and the use thereof as an implantable biomaterial.
摘要:
A method and a composition for delivery of a biomaterial to an animal cell or a tissue, the composition includes (a) a biomaterial; (b) a biodegradable cross-linker portion having a hydrolyzable bond, wherein the biodegradable cross-linker portion is covalently bound to the biomaterial; and (c) a substrate, wherein the substrate is covalently bound to the biodegradable cross-linker portion, provided that the biodegradable cross-linker is adapted to hydrolyze by breaking the hydrolyzable bond and thereby release and deliver the biomaterial. A process of making the composition is also provided.
摘要:
A modified polyurethane including a lipid substituent from at least one urethane nitrogen and/or at least carbon atom of the modified polyurethane.
摘要:
A particle including a matrix-forming agent and a polyelectrolyte-amphiphilic agent adduct wherein the polyelectrolyte-amphiphilic agent adduct is in physical communication with the matrix-forming agent. The particle further includes a coated magnetic field-responsive agent and a biomaterial. Methods of making the particle are provided. Also provided are methods of delivery of the biomaterial to a target cell or a target tissue including administering the particle having the matrix-forming agent, polyelectrolyte-amphiphilic agent adduct, the coated magnetic field-responsive agent and the biomaterial; providing a magnetic device associated with the target cell or the target tissue; applying a magnetic force to the particle; and guiding the particle toward the magnetic device by the magnetic force.