Semiconductor slider with an integral spin valve transistor structure and method for making same without a bonding step
    1.
    发明授权
    Semiconductor slider with an integral spin valve transistor structure and method for making same without a bonding step 有权
    具有整体自旋阀晶体管结构的半导体滑块及其制造方法,而无需结合步骤

    公开(公告)号:US07230805B2

    公开(公告)日:2007-06-12

    申请号:US11036238

    申请日:2005-01-13

    Abstract: A semiconductor slider including an integral spin valve transistor (SVT) having a read width of 250 nm or less disposed on a monolithic semiconductor. substrate, useful in magnetic data storage applications. The monolithic slider may also include other magnetic and semiconductor transistor structures and is fabricated in a single process using standard thin-film processing steps. The SVT includes a sensor stack having a top surface and including a first ferromagnetic (FM) layer in contact with and forming a Schottky barrier at the monolithic semiconductor substrate, a FM shield layer disposed over the sensor stack and in electrical contact with the top surface thereof, a SVT emitter terminal coupled to the FM shield, a SVT collector terminal coupled to the substrate and a SVT base terminal coupled to the first FM layer. The sensor stack may include a spin valve (SV) stack or a tunnel valve (TV) stack, for example.

    Abstract translation: 一种半导体滑块,其包括设置在单片半导体上的读宽度为250nm或更小的整体自旋阀晶体管(SVT)。 基板,可用于磁数据存储应用。 单片滑块还可以包括其它磁性和半导体晶体管结构,并且使用标准薄膜处理步骤在单个工艺中制造。 SVT包括具有顶表面并且包括在单片半导体衬底处接触并形成肖特基势垒的第一铁磁(FM)层的传感器堆叠,设置在传感器堆叠上方并与顶表面电接触的FM屏蔽层 耦合到FM屏蔽的SVT发射极端子,耦合到衬底的SVT集电极端子和耦合到第一FM层的SVT基极端子。 传感器堆叠可以包括例如自旋阀(SV)堆叠或隧道阀(TV)堆叠。

    Semiconductor slider with an integral spin valve transistor structure and method for making same without a bonding step
    2.
    发明授权
    Semiconductor slider with an integral spin valve transistor structure and method for making same without a bonding step 失效
    具有整体自旋阀晶体管结构的半导体滑块及其制造方法,而无需结合步骤

    公开(公告)号:US06870717B2

    公开(公告)日:2005-03-22

    申请号:US10150189

    申请日:2002-05-16

    Abstract: A semiconductor slider including an integral spin valve transistor (SVT) having a read width of 250 nm or less disposed on a monolithic semiconductor substrate, useful in magnetic data storage applications. The monolithic slider may also include other magnetic and semiconductor transistor structures and is fabricated in a single process using standard thin-film processing steps. The SVT includes a sensor stack having a top surface and including a first ferromagnetic (FM) layer in contact with and forming a Schottky barrier at the monolithic semiconductor substrate, a FM shield layer disposed over the sensor stack and in electrical contact with the top surface thereof, a SVT emitter terminal coupled to the FM shield, a SVT collector terminal coupled to the substrate and a SVT base terminal coupled to the first FM layer. The sensor stack may include a spin valve (SV) stack or a tunnel valve (TV) stack, for example.

    Abstract translation: 一种半导体滑块,其包括设置在单片半导体衬底上的读宽度为250nm或更小的整体自旋阀晶体管(SVT),可用于磁数据存储应用。 单片滑块还可以包括其它磁性和半导体晶体管结构,并且使用标准薄膜处理步骤在单个工艺中制造。 SVT包括具有顶表面并且包括在单片半导体衬底处接触并形成肖特基势垒的第一铁磁(FM)层的传感器堆叠,设置在传感器堆叠上方并与顶表面电接触的FM屏蔽层 耦合到FM屏蔽的SVT发射极端子,耦合到衬底的SVT集电极端子和耦合到第一FM层的SVT基极端子。 传感器堆叠可以包括例如自旋阀(SV)堆叠或隧道阀(TV)堆叠。

    Magnetic head with lower coil traces connected to integrally formed vertical interconnects and upper coil traces through plural insulating layer arrangement
    4.
    发明授权
    Magnetic head with lower coil traces connected to integrally formed vertical interconnects and upper coil traces through plural insulating layer arrangement 失效
    具有连接到整体形成的垂直互连的下线圈迹线和通过多个绝缘层布置的上线圈迹线的磁头

    公开(公告)号:US06819527B1

    公开(公告)日:2004-11-16

    申请号:US09535089

    申请日:2000-03-23

    Abstract: A magnetic head having a helical induction coil. The helical coil is fabricated around a magnetic pole yoke in a series of process steps that include a reactive ion etch (RIE) process step which is utilized to simultaneously form vertical interconnect vias and upper helical coil member trenches. Thereafter, in a single fabrication step, such as by electroplating, the vertical interconnect lines and the upper helical coil traces are created in a single fabrication step, such that they are integrally formed. The vertical interconnect lines provide an electrical connection between outer ends of previously formed lower helical coil traces and outer ends of the integrally formed upper helical coil traces, such that a helical coil is fabricated. In the preferred embodiment, the helical coil is composed of copper.

    Abstract translation: 具有螺旋感应线圈的磁头。 在包括反应离子蚀刻(RIE)工艺步骤的一系列工艺步骤中围绕磁极轭制造螺旋线圈,其用于同时形成垂直互连通孔和上部螺旋线圈构件沟槽。 此后,在单个制造步骤中,例如通过电镀,在单个制造步骤中产生垂直互连线和上部螺旋线圈迹线,使得它们整体形成。 垂直互连线在先前形成的下螺旋线圈迹线的外端和整体形成的上螺旋线圈迹线的外端之间提供电连接,从而制造螺旋线圈。 在优选实施例中,螺旋线圈由铜构成。

    Flux guide structure for a spin valve transistor which includes a slider body semiconductor layer
    5.
    发明授权
    Flux guide structure for a spin valve transistor which includes a slider body semiconductor layer 有权
    包括滑块体半导体层的自旋阀晶体管的通量引导结构

    公开(公告)号:US06577476B1

    公开(公告)日:2003-06-10

    申请号:US10108688

    申请日:2002-03-28

    CPC classification number: B82Y10/00 G01R33/06 G11B5/012 G11B5/3106 G11B5/332

    Abstract: A spin valve transistor (SVT) for a magnetic head and a method of making the same are described. A slider of a disk drive is formed of a semiconductor material, such as silicon. A free layer is formed over the semiconductor material and a magnetic pinned layer is formed over a portion of the free layer. The free layer has an edge that is substantially flush with an air bearing surface (ABS) between the magnetic head and the disk, whereas the magnetic pinned layer has an edge that is recessed away from the ABS. Advantageously, since the free layer serves as a flux guiding structure for the sensor, the sensor has a thinner profile at the ABS to accommodate higher recording densities.

    Abstract translation: 描述了一种用于磁头的自旋阀晶体管(SVT)及其制造方法。 磁盘驱动器的滑块由诸如硅的半导体材料形成。 在半导体材料上形成自由层,并且在自由层的一部分上形成磁性被钉扎层。 自由层具有与磁头和盘之间的空气支承表面(ABS)基本齐平的边缘,而磁性钉扎层具有远离ABS凹进的边缘。 有利地,由于自由层用作传感器的通量引导结构,传感器在ABS处具有更薄的轮廓以适应较高的记录密度。

    Magneto-resistive and spin-valve sensor gap with reduced thickness and high thermal conductivity
    6.
    发明授权
    Magneto-resistive and spin-valve sensor gap with reduced thickness and high thermal conductivity 失效
    磁阻和自旋阀传感器间隙具有减小的厚度和高导热性

    公开(公告)号:US06452761B1

    公开(公告)日:2002-09-17

    申请号:US09483087

    申请日:2000-01-14

    Abstract: The current invention provides for magnetic sensor devices with reduced gap thickness and improved thermal conductivity. Gap structures of the current invention are integrated in laminated Magneto-Resistive and Spin-Valve sensors used in magnetic data storage systems. The gap structures are produced by depositing metal layers and oxidizing portions of or all of the metal layers to form thin high quality oxidized metal dielectric separator layers. The oxidized metal layer provides for excellent electrical insulation of the sensor element and any remaining metallic portions of the metal layers provide a thermally conducting pathway to assist the dissipation of heat generated by the sensor element. Because of the combined qualities of electrical insulation and thermal conductivity, magnetic sensor devices of this invention can be made with thinner gap structures and operated at higher drive currents. Further, oxidized metal layers provide suitable surfaces to growing oxidized metal gap insulator layers of any thickness.

    Abstract translation: 本发明提供了具有减小的间隙厚度和改善的导热性的磁传感器装置。 本发明的间隙结构集成在磁数据存储系统中使用的层压磁阻和旋转阀传感器中。 通过沉积金属层和氧化金属层的全部或全部以形成薄的高质量的氧化金属介电隔离层来产生间隙结构。 氧化的金属层提供传感器元件的优异的电绝缘性,并且金属层的任何剩余的金属部分提供导热通路,以帮助消散由传感器元件产生的热量。 由于电绝缘和导热性的综合特性,本发明的磁传感器装置可以用较薄的间隙结构制成,并在较高的驱动电流下工作。 此外,氧化的金属层为任何厚度的生长的氧化金属间隙绝缘体层提供合适的表面。

    Magnetic sensors having antiferromagnetically exchange-coupled layers for longitudinal biasing
    7.
    发明授权
    Magnetic sensors having antiferromagnetically exchange-coupled layers for longitudinal biasing 有权
    具有用于纵向偏置的反铁磁交换耦合层的磁性传感器

    公开(公告)号:US06266218B1

    公开(公告)日:2001-07-24

    申请号:US09428734

    申请日:1999-10-28

    Abstract: A longitudinal bias structure to be placed adjacent a ferromagnetic free layer or a sense layer which is responsive to an external magnetic field and belongs to a magnetic sensor, for example a magnetic readback sensor such as an anisotropic magnetoresistive (AMR) sensor, giant magnetoresistive (GMR) sensor such as GMR spin valve sensor or GMR multilayer sensor or in tunnel valve sensor. The longitudinal bias structure is built up of a top ferromagnetic bias layer of first thickness t1 having a first magnetic moment M1, a bottom ferromagnetic bias layer of second thickness t2 having a second magnetic moment M2 which is anti-parallel to first magnetic moment M1 of the top ferromagnetic bias layer, and an exchange-coupling layer disposed between the top and bottom bias layers. In this configuration the top ferromagnetic bias layer and the bottom ferromagnetic bias layer are antiferromagnetically coupled by the exchange-coupling layer and the remnant magnetization thickness product of the bias structure is desirably low and equal to M1t1−M2t2. The longitudinal bias structure can further include an antiferromagnetic layer next to one of the ferromagnetic bias layers to provide a pinned longitudinal bias structure.

    Abstract translation: 邻近铁磁自由层或响应于外部磁场并属于磁传感器的感测层的纵向偏置结构,例如磁性回读传感器,例如各向异性磁阻(AMR)传感器,巨磁阻( GMR)传感器,如GMR自旋阀传感器或GMR多层传感器或隧道阀传感器。 纵向偏置结构由具有第一磁矩M1的第一厚度t1的顶部铁磁偏置层构成,第二厚度t2的底部铁磁偏置层具有第二磁矩M2,第二磁矩M2与第一磁矩M1的第一磁矩M1反平行 顶部铁磁偏置层以及设置在顶部和底部偏置层之间的交换耦合层。 在该配置中,顶部铁磁偏置层和底部铁磁偏置层通过交换耦合层进行反铁磁耦合,并且偏置结构的剩余磁化厚度乘积期望低且等于M1t1-M2t2。 纵向偏置结构还可以包括与铁磁偏置层之一相邻的反铁磁层,以提供钉扎的纵向偏置结构。

    Laminated yoke head with a domain control element
    8.
    发明授权
    Laminated yoke head with a domain control element 失效
    具有域控制元件的层叠轭头

    公开(公告)号:US06259583B1

    公开(公告)日:2001-07-10

    申请号:US09154527

    申请日:1998-09-16

    CPC classification number: G11B5/3153 G11B5/3113 G11B5/3156

    Abstract: The present invention is a magnetic head which has a preferably planar pole member having a yoke and a tip with a first planar pole P1 and a second planar pole P2 positioned above pole P1. The pole member is built up of two types of layers: a first type of layer with high magnetic permeability &mgr; and low anisotropy Hk, with the easy axis oriented substantially perpendicular to the flux propagation direction to ensure rapid response, and a second layer type which is non-magnetic. The magnetic head also has a domain control element whose magnetization in the vicinity of the pole tip P2 and in the absence of applied field is aligned along the length of the element so as to facilitate the conduction of flux between poles P1 and P2. The domain control element can be a non-laminated element made of a material with high saturation magnetization MS such as NiFe, Ni80Fe20, Ni45Fe55, NiFeCo, FeCo, CoZrNb, FeAlN and FeTaN and proper dimensioning of the element further increases the flux conduction efficiency.

    Abstract translation: 本发明是一种磁头,其具有优选的具有磁轭的平面磁极部件和具有位于磁极P1上方的第一平面磁极P1和第二平面磁极P2的末端。 极构件由两种类型的层构成:具有高磁导率μm和低各向异性H k的第一类型的层,易轴定向为基本上垂直于磁通传播方向,以确保快速响应,以及第二层类型 是非磁性的。 磁头还具有域控制元件,其磁极尖端P2附近的磁化和不存在施加磁场的磁化沿着元件的长度排列,以便于磁极P1和P2之间的磁通传导。 域控制元件可以是由诸如NiFe,Ni80Fe20,Ni45Fe55,NiFeCo,FeCo,CoZrNb,FeAlN和FeTaN的高饱和磁化MS的材料制成的非层叠元件,并且元件的适当尺寸进一步增加了通量传导效率。

    Magnetic tunnel junction memory cell with in-stack biasing of the free
ferromagnetic layer and memory array using the cell
    9.
    发明授权
    Magnetic tunnel junction memory cell with in-stack biasing of the free ferromagnetic layer and memory array using the cell 失效
    磁性隧道结存储单元,其具有自由铁磁层的堆叠偏置和使用该单元的存储器阵列

    公开(公告)号:US6114719A

    公开(公告)日:2000-09-05

    申请号:US87553

    申请日:1998-05-29

    CPC classification number: H01L43/08 G11C11/16 H01L27/224

    Abstract: A magnetic tunnel junction (MTJ) memory cell uses a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the free ferromagnetic layer in the MTJ stack to provide transverse and/or longitudinal bias fields to the free ferromagnetic layer. The MTJ is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the MTJ stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antiferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, a free ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field, and whose moment, in the absence of any applied field, is generally either parallel or antiparallel to that of the fixed ferromagnetic layer, a biasing ferromagnetic layer that has its magnetic moment aligned generally in the plane of the MTJ, and a nonferromagnetic electrically conductive spacer layer separating the biasing ferromagnetic layer from the other layers in the stack. The self field or demagnetizing field from the biasing layer magnetostatically couples with the edges of the free layer so as to provide a transverse bias field, which results in a coherent rotation of the moment of the free layer, and/or a longitudinal bias field, which assures that the two states of the memory cell are equally stable with respect to magnetic field excursions.

    Abstract translation: 磁性隧道结(MTJ)存储单元使用与MTJ堆叠中的自由铁磁层磁静电耦合的MTJ堆叠层中的偏置铁磁层,以向自由铁磁层提供横向和/或纵向偏置场。 MTJ形成在基板上的电引线上,并且由一叠层组成。 MTJ堆叠中的层是反铁磁层,固定的铁磁层与反铁磁层交替偏置,使得其在施加的磁场存在的情况下不能旋转,与固定铁磁层接触的绝缘隧道势垒层, 与隧道势垒层接触的自由铁磁层,其磁矩在施加的磁场的存在下自由旋转,并且其在没有任何施加磁场的情况下的时刻通常是平行或反平行的 固定铁磁层,其磁矩大致在MTJ的平面内的偏置铁磁层,以及将偏置铁磁层与堆叠中的其它层分离的非铁磁导电间隔层。 来自偏置层的自场或去磁场与自由层的边缘静磁耦合,以便提供横向偏置场,这导致自由层的力矩和/或纵向偏置场的相干旋转, 这确保了存储器单元的两个状态相对于磁场偏移同样稳定。

    Magnetic tunnel junction device with longitudinal biasing
    10.
    发明授权
    Magnetic tunnel junction device with longitudinal biasing 失效
    具有纵向偏置的磁隧道连接装置

    公开(公告)号:US5729410A

    公开(公告)日:1998-03-17

    申请号:US757422

    申请日:1996-11-27

    Abstract: A magnetic tunnel junction device for use as a magnetic memory cell or a magnetic field sensor has one fixed ferromagnetic layer and one sensing ferromagnetic layer formed on opposite sides of the insulating tunnel barrier layer, and a hard biasing ferromagnetic layer that is electrically insulated from but yet magnetostatically coupled with the sensing ferromagnetic layer. The magnetic tunnel junction in the device is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antfferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, and a sensing ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field. The stack is generally rectangularly shaped with parallel side edges. A layer of hard biasing ferromagnetic material is located near to but spaced from the side edges of the sensing ferromagnetic layer to longitudinally bias the magnetic moment of the sensing ferromagnetic layer in a preferred direction. A layer of electrically insulating material isolates the hard biasing material from the electrical lead and the sensing ferromagnetic layer so that sense current is not shunted to the hard biasing material but is allowed to flow perpendicularly through the layers in the stack.

    Abstract translation: 用作磁存储单元或磁场传感器的磁性隧道结装置具有形成在绝缘隧道势垒层的相对侧上的一个固定铁磁层和一个感测铁磁层,以及与...绝缘的硬偏磁铁磁层 然后与传感铁磁层静磁耦合。 器件中的磁性隧道结形成在衬底上的电引线上,并且由一叠层组成。 堆叠中的层是反铁磁层,固定铁磁层与铁磁层交换偏置,使得其磁矩不能在施加的磁场存在下旋转,绝缘隧道势垒层与固定铁磁层接触,以及 与隧道势垒层接触的感测铁磁层,其磁矩在施加的磁场的存在下自由旋转。 该堆叠通常为具有平行侧边缘的矩形形状。 硬偏压铁磁材料层位于感测铁磁层的侧边缘附近但与其隔开的位置,以纵向偏置感测铁磁层在优选方向上的磁矩。 电绝缘材料层将硬偏压材料与电引线和感测铁磁层隔离,使得感测电流不被分流到硬偏压材料,而是允许垂直于堆叠中的层流动。

Patent Agency Ranking