摘要:
A hybrid organic light-emitting transistor device and a manufacturing method thereof are provided. The hybrid organic light-emitting transistor device includes at least one organic light-emitting diode device and at least one organic thin-film transistor device placed on the same substrate. The organic light-emitting diode device has a first organic layer placed between an anode and a cathode, and the organic thin-film transistor device has a second organic layer placed on a source electrode and a drain electrode. The first organic layer and the second organic layer are spatially isolated from each other, and an organic material forming the second organic layer is identical to an organic material forming the first organic layer. The hybrid organic light-emitting transistor with a reduced pixel size and an improved aperture ratio can be easily obtained.
摘要:
An organic thin film transistor including: a substrate; a gate electrode placed on the substrate; a gate insulating film placed on the gate electrode; a source electrode and a drain electrode which are placed on the gate insulating film; an organic semiconductor layer placed on the gate insulating film between the source electrode and the drain electrode; a hole transport layer placed on the organic semiconductor layer; an electron transport layer placed on the hole transport layer; and a conductor layer placed on the electron transport layer; the organic thin film transistor which characteristics are stable by being protected from oxygen or moisture and being protected electromagnetically and which is suitable for integration.
摘要:
A semiconductor device and a method of producing the same is disclosed, in which a through hole is formed in the upper surface of a semiconductor substrate from the lower surface thereof, and an opening of a desired size is formed in a desired position on the upper surface of the substrate. A guide that functions as an etching stopper is formed in the semiconductor substrate. An opening having a width W2 is formed in the guide. The opening faces an opening in a mask used in the formation of a through hole, and the width W2 thereof is narrower than a width W4 of the opening in the mask. The direction in which etching progresses is controlled by the opening formed in the guide as etching is conducted from a lower surface of the substrate to an upper surface of the substrate, and thus deviations in the width W1 and position of an opening in the upper surface of the substrate can be controlled.
摘要:
A highly transparent fiber composite material is provided that can be manufactured through a simplified process using reduced amounts of raw materials and that has high flexibility and low thermal expansivity and retains good functionality of the fiber material. The fiber composite material includes: a fiber assembly having an average fiber diameter of 4 to 200 nm and a 50 μm-thick visible light transmittance of 3% or more; and a coating layer that coats and smoothes the surface of the fiber assembly, wherein the fiber composite material has a 50 μm-thick visible light transmittance of 60% or more. With this fiber assembly, the scattering of light caused by the irregularities on the surface can be suppressed by coating the surface with the coating layer to smooth the surface, whereby a highly transparent fiber composite material can be obtained.
摘要:
An organic EL element (Al) includes an anode (2) and a cathode (4) which are arranged opposite to each other, and an organic layer (3) intervening between the anode (2) and the cathode (4) and including a light emitting layer (3b). The cathode (4) is made of MgAg alloy and has a thickness of not more than 200 Å. Preferably, the thickness of the cathode (4) is in the range of 40 to 100 Å.
摘要:
It is provided an organic semiconductor element having an FET which can control a channel length to a small value and does not cause a rise in contact resistance due to a step portion, and an organic light emitting display device with a large aperture using the same. A first conductive layer (2) which is one of source/drain electrodes is provided onto a substrate (1), and an organic semiconductor layer (3) and a second conductive layer (4) which is the other electrode of the source/drain electrodes are provided onto the first conductive layer (2). Then on a side face of the organic semiconductor layer or a front surface of the organic semiconductor layer (3) exposed by removing a part of the second conductive layer and a side face of the second conductive layer a gate electrode (third conductive layer) (6) is provided via an insulating layer (5), thereby to form an FET. The organic EL display device has the FET having such structure laminated on an organic EL section as a drive element.
摘要:
(a) At first a semiconductor substrate (11) having a lacunose layer (12) disposed at a equal depth (h) from the surface of a semiconductor layer (1) is formed; (b) then electric components (2), for example, transistors, or lines (3) for an electric circuit are formed on the semiconductor layer (1) at the surface side with respect to the lacunose layer (12); (c) then the semiconductor substrate is separated at the lacunose layer; (d) and an insulating layer (5) is formed on the surface exposed by the separation. The ultrathin semiconductor device has a thickness lower than 20 micro meters. As a result, a thin semiconductor device, having an SOI structure, for example can be fabricated, without the electric components and the insulating layer being influenced by charging up, which may appear during the manufacturing process. And it is also possible to realize a three dimensional semiconductor device.
摘要:
An ONO layer 18 located vicinity of a transistor TR1 for programming is removed. A floating gate FG1 of the transistor TR1 is formed by carrying out etching of a polysilicon layer 16. Then, an inter-layer film SM1 of the transistor TR1 is formed by carrying out oxidation process. The inter-layer film SM1 is formed so as to cover the floating gate FG1. Arsenic is implanted ionically into a semiconductor-substrate 12 using the floating gate FG1 and the inter-layer film SM1 as a mask. Ions of the arsenic thus implanted do not pass through the inter-layer film SM1 and are stopped at the surface. Because the inter-layer film SM1 is made of a silicon oxidation layer formed relatively thick. So that, the inter-layer film SM1 maintains its charge-storage characteristic originally owns even when the ion implantation is carried out.
摘要:
A floating gate (FG) of a ferroelectric transistor (FTR11) and a source (SS) of a selecting transistor (STR11) are interconnected. A control gate (FCG) of the ferroelectric transistor (FTR11) is connected to a word line (WL1), a drain (SD) of the selecting transistor (STR11) is connected to a bit line (BL11), and a gate (SG) of the selecting transistor (STR11) is connected to a gate line (G). In the writing mode, "5V" is given to the gate line (G) to set the selecting transistors (STR11, . . . ) to the on state. A ferroelectric layer (FM) is polarized by giving a suitable voltage to the word lines (WL1, . . . ) and the bit lines (BL1, . . . ). In the operation mode, "0V" is given to the gate line (G) to set the selecting transistors (STR11, . . . ) to the off state.
摘要:
A virtual ground array semiconductor memory device includes a matrix of memory cells, which performs writing and erasing operations utilizing FN current, reduces the electric power consumption and the deterioration of a tunnel insulating film. Each memory cell has a floating gate on one side of a channel region and a control gate covering the floating gate and the other side of the channel region.