Abstract:
The inventive concepts provide package-on-package (PoP) devices. In the PoP devices, an interposer substrate and a thermal boundary material layer may be disposed between a lower semiconductor package and an upper semiconductor package to rapidly exhaust heat generated from a lower semiconductor chip included in the lower semiconductor package. The interposer substrate may be formed of one or more insulating layers, conductive vias, heat dissipating members, protection layers, and various conductive patterns.
Abstract:
A semiconductor package may include a substrate including a substrate pad on a top surface thereof; at least one semiconductor chip including a connection terminal electrically connected to the substrate on an active surface thereof, and mounted on the substrate; a heat release pattern formed between the substrate and the at least one semiconductor chip and configured to generate heat; and underfill resin underfilled between the substrate and the at least one semiconductor chip and comprising fillers. A semiconductor package may include a substrate including a substrate pad on a top surface thereof and a first heat release pattern configured to generate heat, and a semiconductor chip including a bonding pad formed on an active surface facing the substrate and a second heat release pattern configured to generate heat.
Abstract:
A semiconductor package includes a circuit board having an inner circuit pattern and a plurality of contact pads connected to the inner circuit pattern, at least one integrated circuit (IC) device on the circuit board and making contact with the contact pads, a mold on the circuit board, the mold fixing the IC device to the circuit board, and a surface profile modifier on a surface of the IC device and a surface of the mold, and the surface profile modifier enlarging a surface area of the IC device and the mold to dissipate heat.
Abstract:
A semiconductor package may include a substrate including a substrate pad on a top surface thereof; at least one semiconductor chip including a connection terminal electrically connected to the substrate on an active surface thereof, and mounted on the substrate; a heat release pattern formed between the substrate and the at least one semiconductor chip and configured to generate heat; and underfill resin underfilled between the substrate and the at least one semiconductor chip and comprising fillers. A semiconductor package may include a substrate including a substrate pad on a top surface thereof and a first heat release pattern configured to generate heat, and a semiconductor chip including a bonding pad formed on an active surface facing the substrate and a second heat release pattern configured to generate heat.
Abstract:
Semiconductor package are provided. In one embodiment, the semiconductor package may include a substrate such as a circuit substrate, a semiconductor chip mounted on the circuit substrate, a molding (or an encapsulant) covering the semiconductor chip and the circuit substrate and including a first temperature control member, and a heat dissipation member covering the molding.
Abstract:
A semiconductor package includes a lower package including a lower semiconductor chip on a lower package substrate, an upper package on the lower package, and a heat interface material between the lower package and the upper package. The upper package includes an upper semiconductor chip on an upper package substrate including a center portion adjacent to the lower semiconductor chip and an edge portion. The heat interface material is in contact with a top surface of the lower semiconductor chip and the upper package substrate. The upper package substrate includes a heat diffusion via penetrating the center portion and an interconnection via penetrating the edge portion. The interconnection via is spaced apart from the heat diffusion via.
Abstract:
According to example embodiments, a semiconductor package includes a lower package, upper packages on the lower package and laterally spaced apart from each other, a lower heat exhaust part between the lower package and the upper packages, an intermediate heat exhaust part between the upper packages and connected to the lower heat exhaust part, and an upper heat exhaust part on the upper packages and connected to the intermediate heat exhaust part.
Abstract:
A semiconductor package device includes a lower package including a lower semiconductor chip mounted on the lower package substrate, a lower molding compound layer disposed on the lower package substrate, a first trench formed in the lower molding compound layer to surround the lower semiconductor chip, and a second trench connected to the first trench to extend to an outer wall of the lower package, the second trench being formed in the lower molding compound layer, an upper package disposed on the lower package. The upper package includes an upper package substrate and at least one upper semiconductor chip mounted on the upper package substrate and a heat transfer member disposed between the lower package and the upper package.
Abstract:
According to example embodiments, a semiconductor package includes a lower package, upper packages on the lower package and laterally spaced apart from each other, a lower heat exhaust part between the lower package and the upper packages, an intermediate heat exhaust part between the upper packages and connected to the lower heat exhaust part, and an upper heat exhaust part on the upper packages and connected to the intermediate heat exhaust part.
Abstract:
The inventive concepts provide package-on-package (PoP) devices. In the PoP devices, an interposer substrate and a thermal boundary material layer may be disposed between a lower semiconductor package and an upper semiconductor package to rapidly exhaust heat generated from a lower semiconductor chip included in the lower semiconductor package. The interposer substrate may be formed of one or more insulating layers, conductive vias, heat dissipating members, protection layers, and various conductive patterns.