Abstract:
A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
Abstract:
A threshold device including a plurality of adjacent tunnel barrier layers that are in contact with one another and are made from a plurality of different dielectric materials is disclosed. A memory plug having first and second terminals includes, electrically in series with the first and second terminals, the threshold device and a memory element that stores data as a plurality of conductivity profiles. The threshold device is operative to impart a characteristic I-V curve that defines current flow through the memory element as a function of applied voltage across the terminals during data operations. The threshold device substantially reduces or eliminates current flow through half-selected or un-selected memory plugs and allows a sufficient magnitude of current to flow through memory plugs that are selected for read and write operations. The threshold device reduces or eliminates data disturb in half-selected memory plugs and increases S/N ratio during read operations.
Abstract:
A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
Abstract:
An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
Abstract:
Structures and methods to enhance cycling endurance of BEOL memory elements are disclosed. In some embodiments, a memory element can include a support layer having a smooth and planar upper surface as deposited or as created by additional processing. A first electrode is formed the smooth and planar upper surface. The support layer can be configured to influence the formation of the first electrode to determine a substantially smooth surface of the first electrode. The memory element is formed over the first electrode having the substantially smooth surface, the memory element including one or more layers of an insulating metal oxide (IMO) operative to exchange ions to store a plurality of resistive states. The substantially smooth surface of the first electrode provides for uniform current densities through unit cross-sectional areas of the IMO. The memory element can include one or more layers of a conductive metal oxide (CMO).
Abstract:
A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
Abstract:
An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
Abstract:
A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
Abstract:
An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
Abstract:
Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to scale memory elements, such as implemented in BEOL third dimensional memory technology, independent of operational characteristics. In at least some embodiments, a method to fabricate a non-volatile two-terminal memory device includes depositing a first electrode at a first temperature in a first region in relation to a substrate (e.g., a silicon wafer) that includes active circuitry that was previously fabricated FEOL on the substrate, fabricating a memory element coupled to the first electrode, and optionally, forming at least a portion of a non-ohmic device electrically coupled with the memory element. Further, the method can include depositing a second electrode at a second temperature in a second region in relation to the substrate. In some embodiments, the second temperature is approximately equal to or greater than the first temperature.