摘要:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity having a planar surface using a reverse damascene process.
摘要:
Methods for planarizing layers of a material, such as a dielectric, and interconnect structures formed by the planarization methods. The method includes depositing a first dielectric layer on a top surface of multiple conductive features and on a top surface of a substrate between the conductive features. A portion of the first dielectric layer is selectively removed from the top surface of at least one of the conductive features without removing a portion the first dielectric layer that is between the conductive features. A second dielectric layer is formed on the top surface of the at least one of the conductive features and on a top surface of the first dielectric layer, and a top surface of the second dielectric layer is planarized. A layer operating as an etch stop is located between the top surface of at least one of the conductive features and the second dielectric layer.
摘要:
The disclosure relates generally to semiconductor device fabrication, and more particularly to methods of electroplating used in semiconductor device fabrication. A method of electroplating includes: immersing an in-process substrate into an electrolytic plating solution to form a first metal layer on the in-process substrate; then performing a first chemical-mechanical polish to a liner on the in-process substrate followed by immersing the in-process substrate into the electrolytic plating solution to form a second metal layer on the first metal layer and the liner; and performing a second chemical-mechanical polish to the liner.
摘要:
A composition and a method for chemical mechanical polishing. The composition includes a surfactant anion an alkyl alcohol, a controlled amount of chloride ion source and a diluent. The composition further includes abrasive particles and an oxidizer. The method includes providing the composition on a surface to be polished and polishing the surface by contacting the surface with a polishing pad.
摘要:
A patterned portion of a patterned semiconductor substrate is removed by abrasive mechanical planarization employing an abrasive pad but without employing any slurry. Preferably, water is supplied to enhance the removal rate during the mechanical planarization. The removal rate of material is substantially independent for common materials employed in back-end-of-line (BEOL) semiconductor materials, which enables non-selective removal of the material containing metallization structures. The removal rate of silicon is lower than the removal rate for the BEOL semiconductor materials, enabling a self-stopping planarization process.
摘要:
A process for making a crackstop on a semiconductor device is disclosed. The process involves creating and metallizing a groove surrounding the active region on a chip at the same time as other functional metallization is occurring, and then selectively etching out the metal in the groove after final passivation. In various embodiments the groove passes through the surface dielectric or the semiconductor substrate. In one embodiment the groove is replaced by hollow metal rings that can be stacked through multiple dielectric layers.
摘要:
A composition and a method for chemical mechanical polishing. The composition includes a surfactant anion an alkyl alcohol and a diluent. The composition further includes abrasive particles and an oxidizer. The method includes providing the composition on a surface to be polished and polishing the surface by contacting the surface with a polishing pad.
摘要:
A composition and a method for chemical mechanical polishing. The composition includes a surfactant anion an alkyl alcohol, a controlled amount of chloride ion source and a diluent. The composition further includes abrasive particles and an oxidizer. The method includes providing the composition on a surface to be polished and polishing the surface by contacting the surface with a polishing pad.
摘要:
A solution for forming a polishing slurry, the polishing slurry and related methods are disclosed. The solution for forming a polishing slurry may include 1H-benzotriazole (BTA) dissolved in an ionic surfactant such as a sodium alkyl sulfate solution, and perhaps a polyacrylic acid (PAA) solution. The solution can be filtered and used in a polishing slurry. This approach to solubilizing BTA results in a high BTA concentration in a polishing slurry without addition of foreign components to the slurry or increased safety hazard. In addition, the solution is easier to ship because it is very stable (e.g., can be frozen and thawed) and has less volume compared to conventional approaches. Further, the polishing slurry performance is vastly improved due to the removal of particles that can cause scratching.
摘要:
A patterned portion of a patterned semiconductor substrate is removed by abrasive mechanical planarization employing an abrasive pad but without employing any slurry. Preferably, water is supplied to enhance the removal rate during the mechanical planarization. The removal rate of material is substantially independent for common materials employed in back-end-of-line (BEOL) semiconductor materials, which enables non-selective removal of the material containing metallization structures. The removal rate of silicon is lower than the removal rate for the BEOL semiconductor materials, enabling a self-stopping planarization process.