摘要:
A demineralized bone matrix (DBM) or other matrix composition is provided that has been stabilized by lowering the pH of the composition, reducing the water content, adding water substitutes, and/or increasing the amount of deuterated water present in the composition in order to reduce the activity of endogenous degrading enzymes such as proteases. A hydrated form of a stabilized DBM composition may be stable up to a year at room temperature at acidic pH. The acidified DBM compositions may be further stabilized by the addition of a stabilizing agent such as deuterated water, water substitutes, polymers, protease inhibitors, glycerol or hydrogels.
摘要:
Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
摘要:
A malleable implant for implantation into living tissue is prepared having access means for cells into the interior of the implant. The implant is capable of being deformed under pressure required to insert the implant into an implant site. The access means can be hollow or solid. The solid comprises a material that more rapidly resorbs in vivo than the malleable implant to provide channels, or comprises a mechanically weak material that fractures under force at an implant site to produce channels or cracks. The access means may be inserted in the malleable implant at an implant site. A multilaminar structure may be formed having layers of malleable implant and layers of access means, or the access means may be heterogeneously distributed throughout the malleable implant. A kit can contain a powder such as calcium phosphate for making a paste implant material, and an access means insertable into the paste.
摘要:
Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
摘要:
An implant including a substantially cohesive aggregate comprising bone-derived particles. Cohesiveness is maintained by a member of mechanical interlocking, engagement of adjacent bone-derived particles with one another through engagement with a binding agent, thermal bonding, chemical bonding, or a matrix material in which the bone-derived particles are retained. The aggregate is shaped as a one-dimensional or two-dimensional body.
摘要:
A line of .beta. cells is described which is capable of maintaining high levels of insulin secretion in culture. Such cells are useful in the treatment of diabetes, for example, by encapsulation of the cells in an insulin-permeable membrane device, followed by implantation into a diabetes patient.
摘要:
A method of producing a bone-polymer composite. The method comprises the steps of providing a plurality of bone particles, combining the bone particles with a polymer precursor, and polymerizing the polymer precursor.
摘要:
The invention provides a method for the preparation of bone-polymer composites wherein the mineral portion of the bone is treated with a coupling agent before being incorporated into a biocompatible polymeric matrix. The resulting composites may be used as such or be further processed to form an osteoimplant.
摘要:
The invention provides moldable drug delivery carriers made up of a suspension of a solid phase and an organic liquid phase for the sustained release of a therapeutic agent. The invention also provides multiphase drug delivery systems made up of a granular hydrophobic solid phase, an organic liquid phase and a hydrogel, for sustained drug delivery at varying rates over the life of the composition.
摘要:
The invention provides a method for the preparation of bone-polymer composites wherein the mineral portion of the bone is treated with a coupling agent before being incorporated into a biocompatible polymeric matrix. The resulting composites may be used as such or be further processed to form an osteoimplant.