Abstract:
According to one embodiment, a magnetic memory is disclosed. The memory includes a conductive layer containing a first metal material, a stacked body above the conductive layer, and including a first magnetization film containing a second metal material, a second magnetization film, and a tunnel barrier layer between the first magnetization film and the second magnetization film, and an insulating layer on a side face of the stacked body, and containing an oxide of the first metal material. The first magnetization film and/or the second magnetization film includes a first region positioned in a central portion, and a second region positioned in an edge portion and containing As, P, Ge, Ga, Sb, In, N, Ar, He, F, Cl, Br, I, Si, B, C, O, Zr, Tb, S, Se, or Ti.
Abstract:
According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.
Abstract:
According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.
Abstract:
A method for fabricating a non-volatile memory device with a three-dimensional structure includes forming a pipe gate conductive layer on a substrate, forming a pipe channel hole in the pipe gate conductive layer, burying a first sacrificial layer in the pipe channel hole, stacking interlayer dielectric layers and gate conductive layers on the pipe gate conductive layer including the first sacrificial layer, forming a pair of cell channel holes in the interlayer dielectric layers and the gate conductive layers, forming a second sacrificial layer on a resultant structure including the pair of cell channel holes, and forming a third sacrificial layer with etching selectivity relative to the second sacrificial layer on the second sacrificial layer and filling the cell channel holes with the third sacrificial layer.
Abstract:
The present invention relates to a method of forming an insulating film in a semiconductor device. After a mixed gas of alkyl silane gas and N2O gas is supplied into the deposition equipment, a radio frequency power including a short pulse wave for causing incomplete reaction upon a gas phase reaction is applied to generate nano particle. The nano particle is then reacted to oxygen radical to form the insulating film including a plurality of nano voids. A low-dielectric insulating film that can be applied to the nano technology even in the existing LECVD equipment is formed.
Abstract translation:本发明涉及在半导体器件中形成绝缘膜的方法。 在沉积设备中提供烷基硅烷气体和N 2 O 2气体的混合气体后,施加包括在气相反应中引起不完全反应的短脉冲波的射频功率以产生纳米 粒子。 然后使纳米颗粒与氧自由基反应以形成包括多个纳米空隙的绝缘膜。 形成即使在现有的LECVD设备中也可应用于纳米技术的低介电绝缘膜。
Abstract:
A method and an apparatus for depositing a dielectric layer to fill in a gap between adjacent metal lines. In preferred embodiments of the method, a first dielectric layer is deposited over the lines and subsequently etched using both chemical and physical etchback steps. After the etchback steps are completed, a second dielectric layer is deposited over the first dielectric layer to fill in the gap.
Abstract:
A process for forming a copper wiring and the prevention of copper ion migration in a semiconductor device is disclosed herein. The process includes conducting a post-cleaning process for a copper layer that is to form the cooper wiring after already having undergone a CMP process. The post-cleaning process includes conducting a primary chemical cleaning using a citric acid-based chemical. A secondary chemical cleaning is then conducted on the copper layer having undergone the primary chemical cleaning using an ascorbic acid-based chemical. After the post-cleaning process is completed, the migration of copper ions over time is prevented thereby improving the reliability of the semiconductor device.
Abstract:
The present invention relates to a method for forming an insulating layer in a semiconductor device. After a first oxide film is formed in a trench, an impurity remaining on the first oxide film in the process of etching the first oxide film using a gas containing fluorine is stripped using oxygen plasma or hydrogen plasma. Thus, it can prevent degradation of device properties due to diffusion of the impurity without additional equipment. Therefore, it can help improve reliability of a next-generation device.
Abstract:
According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.
Abstract:
According to one embodiment, a magnetic memory is disclosed. The memory includes a conductive layer containing a first metal material, a stacked body above the conductive layer, and including a first magnetization film containing a second metal material, a second magnetization film, and a tunnel barrier layer between the first magnetization film and the second magnetization film, and an insulating layer on a side face of the stacked body, and containing an oxide of the first metal material. The first magnetization film and/or the second magnetization film includes a first region positioned in a central portion, and a second region positioned in an edge portion and containing As, P, Ge, Ga, Sb, In, N, Ar, He, F, Cl, Br, I, Si, B, C, O, Zr, Tb, S, Se, or Ti.