Abstract:
A process for heating a polymeric material throughout its thickness using infrared electromagnetic radiation, whereby there is dispersed in the polymeric material throughout its thickness an infrared radiation absorbing agent in an amount such that at least a portion of the infrared radiation incident on the material from one side exits from the opposite side. The absorbed radiation may selectably vary from 1% to 99%; the particular percentage is calculated to rapidly heat the material to a temperature that depends on a particular application, and may be sufficient to soften the material so it can be pressure formed into a desired shape or, alternatively, high enough to melt this material when placed between two surfaces and used to the two surfaces together.
Abstract:
The present invention relates to using an adhesive and process for heating, curing, joining, attaching and detaching a part article from a body substrate structure. Described are polymeric adhesive compositions and methods of curing using a radiation apparatus for rapid adhesive bonding and attaching a fastener part to a structure surface. The adhesive composition contains additives that directly or indirectly absorb projected radiation from a radiation apparatus to rapidly and uniformly melt the adhesive and bond the surface of the part material onto the surface of the substrate material. A process is also described to reverse the adhesive bonding and detach the fastener part from the substrate.
Abstract:
The present invention relates to using an adhesive and process for heating, curing, joining, attaching and detaching a part article from a body substrate structure. Described are polymeric adhesive compositions and methods of curing using a radiation apparatus for rapid adhesive bonding and attaching a fastener part to a structure surface. The adhesive composition contains additives that directly or indirectly absorb projected radiation from a radiation apparatus to rapidly and uniformly melt the adhesive and bond the surface of the part material onto the surface of the substrate material. A process is also described to reverse the adhesive bonding and detach the fastener part from the substrate.
Abstract:
An optical system for joining a first article having a composition and a second article having a composition at an interfacial surface between the first article and the second article, the optical system comprising: a radiation source for providing a radiant energy beam for joining the first article and the second article at the interfacial surface; and a first optical device for controlling a depth of focus of the radiant energy beam, the depth of focus corresponding to a depth of a joint between the first article and the second article at the interfacial surface, said first optical device controlling the depth of focus as a function of the composition of the first article and the composition of the second article.
Abstract:
The present invention relates to a composite article and to a process for manufacturing the composite article. The composite article comprises multiple layers including high tenacity fibers incorporated into a fabric and a core thermoplastic resin. The fabric may be coated with a surface treatment agent, a polymer matrix resin. Single or multiple layers of the composite articles may be formed into a composite part having high strength, rigidity, fast molding cycle time and extremely good conformability in a 3-dimensional mold. The composite parts formed by this process have high part strength in all directions.
Abstract:
The present invention relates to a prepreg composite and to a process for manufacturing the prepreg composite. The manufacturing process involves surface treatment and impregnation of a high tenacity fibrous material with a surface treatment agent and a polymer matrix resin material. The fiber may be in the form of a woven, unidirectional or non-woven fabric. The fiber may optionally be coated with a surfactant and/or an adhesion promoter. Prior to treatment, the surface treatment materials may be contained in a dispersion of nano-particles in which each material has a film forming process temperature at a value below the degradation temperature of the fiber. The layers may be applied individually or simultaneously onto the fibers. The coated material is heat dried without compression to form a prepreg composite.
Abstract:
The present invention relates to a composite article and to a process for manufacturing the composite article. The composite article comprises multiple layers including high tenacity fibers incorporated into a fabric and a core thermoplastic resin. The fabric may be coated with a surface treatment agent and a polymer matrix resin. Single or multiple layers of the composite articles may be formed into a composite part having high strength, rigidity, fast molding cycle time and extremely good conformability in a 3-dimensional mold. The composite parts formed by this process have high part strength in all directions.
Abstract:
The present invention relates to a composite article and to a process for manufacturing the composite article. The composite article comprises multiple layers including high tenacity fibers incorporated into a fabric and a core thermoplastic resin. The fabric may be coated with a surface treatment agent, a polymer matrix resin. Single or multiple layers of the composite articles may be formed into a composite part having high strength, rigidity, fast molding cycle time and extremely good conformability in a 3-dimensional mold. The composite parts formed by this process have high part strength in all directions.
Abstract:
A method and apparatus for exposing photosensitive recording material is presented. The invention provides for using chromatic lenses to focus polychromatic light onto recording media. The resulting chromatic aberrations contribute to exposing recording media in three dimensions. The method and apparatus presented also provide for improved quantum efficiency in the exposure of photosensitive recording material.