摘要:
High-power and high-frequency semiconductor devices require high signal integrity and high thermal conductance assembly technologies and packages. In particular, wide-gap-semiconductor devices on diamond benefit from spatially separate electrical and thermal connections. This application discloses assembly and package architectures that offer high signal integrity and high thermal conductance.
摘要:
The present invention provides an approach which provides an increase in the number of usable substrates with a film, such as titanium nitride, deposited thereon at a sufficient deposition rate and where the film meets uniformity and resistivity specifications as well as providing good step coverage. In accordance with an embodiment, the present invention provides an apparatus for substrate processing. The apparatus circulates a heat exchange medium through a passage in a chamber body of a vacuum chamber, and heats a heater pedestal having a surface for supporting the substrate to a heater temperature. The heat exchange medium has a heat exchange temperature of about 60.degree. C. or less. The the apparatus also flows a gas into the chamber at a flow rate to deposit a film on a substrate, where the flow rate provides an effective temperature of the substrate lower than the heater temperature and where the film meets uniformity and resistance specifications after deposition onto a number of substrates. This number is less than twenty-five, in some embodiments, and less than ten in other embodiments. The use of the present invention thus avoids the discarding of the initial hundreds of processed substrates not meeting specifications that is typically experienced with the prior art processes.
摘要:
A reactor for plasma-enhanced chemical vapor deposition having a showerhead electrode facing the wafer being CVD deposited, the showerhead having a large number of jetting holes for jetting processing gas towards the wafer. Two deep grooves are formed around the area of the showerhead containing the jetting holes. The grooves are formed from opposite sides of the showerhead and are radially offset from each other, thereby forming a thin wall between the grooves in the body of the showerhead. The thin wall acts as a thermal choke, thus reducing the heat flow to the support of the showerhead and also rendering the temperature distribution more uniform across the face of the showerhead. The thin wall further acts as a mechanical bellows to accommodate differential thermal expansion between the showerhead and its support.
摘要:
A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material on peripheral portions of the pedestal supporting a wafer and in a pumping channel exhausting the chamber. A peripheral ring placed on the pedestal, preferably also used to center the wafer, is thermally isolated from the pedestal so that its temperature is kept substantially lower than that of the wafer. Despite its thermal isolation, the peripheral ring is electrically connected to the pedestal to prevent arcing. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.
摘要:
A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material in a pumping channel exhausting the chamber. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.
摘要:
The present invention provides a method and apparatus for limiting residue build-up by lining with a ceramic material the exhaust plenun and exhaust manifold of a processing chamber. In another aspect of the invention, the inventors have used an air gap between the ceramic liner and the processing chamber walls to increase the dielectric value of the ceramic liner, and further inhibit the build-up of residues. In another aspect, the ceramic liner has been found to retain sufficient heat to allow the elimination of heaters typically used to heat the aluminum walls during a clean operation, if the clean operation is commenced immediately after a process step so that the ceramic retains the necessary heat from the previous processing step. The provision of an air gap aids in this heating, preventing the ceramic heat from being drawn off by direct contact with the aluminum walls. In a preferred embodiment, the ceramic liners are attached to the chamber walls with TEFLON.RTM. (polytetrafluoroethylene) screws.
摘要:
A process chamber is disclosed which provides a 360.degree. circular gas/vacuum distribution over a substrate being processed. The substrate being processed is supported on a heated and optionally cooled pedestal assembly. The substrate faces a one-piece gas distribution faceplate being connected to an RF power supply outside the vacuum environment of the processing chamber. A pumping channel view port is provided to verify and confirm instrumentation readings concerning the degree of surface deposition on process chamber internal surfaces. All process chamber wall surfaces facing the region where plasma will be present during processing (except the gas distribution faceplate) are ceramic and therefore highly resistant to corrosion. The pedestal an un-anodized metal is also covered with a loosely fitting ceramic surface having alignment features to maintain concentricity between the wafer support surface of the pedestal and the wafer being processed. A valve body is contained within the wall of the processing chamber helping to reduce the surface area available for condensation of volatile process gas constituents which condense or cool in vacuum passage surfaces and can contaminate the process chamber if allowed to migrate back to it through the vacuum piping.
摘要:
A process chamber is disclosed which provides a 360.degree. circular gas/vacuum distribution over a substrate being processed. The substrate being processed is supported on a heated and optionally cooled pedestal assembly. The substrate faces a one-piece gas distribution faceplate being connected to an RF power supply outside the vacuum environment of the processing chamber. A pumping channel view port is provided to verify and confirm instrumentation readings concerning the degree of surface deposition on process chamber internal surfaces. All process chamber wall surfaces facing the region where plasma will be present during processing (except the gas distribution faceplate) are ceramic and therefore highly resistant to corrosion. The pedestal an un-anodized metal is also covered with a loosely fitting ceramic surface having alignment features to maintain concentricity between the wafer support surface of the pedestal and the wafer being processed. A valve body is contained within the wall of the processing chamber helping to reduce the surface area available for condensation of volatile process gas constituents which condense or cool in vacuum passage surfaces and can contaminate the process chamber if allowed to migrate back to it through the vacuum piping.
摘要:
An apparatus for use in a substrate processing system. The apparatus is generally a fluid distribution plate comprising an inner disk and an outer ring. The fluid distribution plate has a plurality of openings for fluid distribution and at least one slot defined therein.
摘要:
A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.