Systems for cleaning a portion of a lithography apparatus

    公开(公告)号:US12235595B2

    公开(公告)日:2025-02-25

    申请号:US17771044

    申请日:2020-10-20

    Abstract: A cleaning tool configured to be inserted into a lithography apparatus in a first configuration, configured to be engaged by a handler of the lithography apparatus, and used for cleaning a portion of the lithography apparatus. The cleaning tool is configured to move from the first configuration to a second, expanded configuration, after engagement by the handler such that the cleaning tool is in the second configuration when used for cleaning the portion of the lithography apparatus. There may also be a container configured to hold the cleaning tool in the first configuration and fit into the lithography apparatus. In that case, the cleaning tool is configured to be inserted into the lithography apparatus in the container, moved from the container by the handler for the cleaning, and returned to the container by the handler after the cleaning.

    Double-scanning opto-mechanical configurations to improve throughput of particle inspection systems

    公开(公告)号:US12140870B2

    公开(公告)日:2024-11-12

    申请号:US18018127

    申请日:2021-07-20

    Abstract: Systems, apparatuses, and methods are provided for increasing the throughput of a particle inspection system. During a first portion of an exposure time period of the particle inspection system, an example method can include irradiating a first region of a substrate surface, blocking all reflected radiation outside the first region, and generating a first sub-image of the first region based on radiation reflected from the first region. During a second portion of the exposure time period, the example method can further include irradiating a second region of the substrate surface, blocking all reflected radiation outside the second region, and generating a second sub-image of the second region based on radiation reflected from the second region. Subsequently, the example method can include generating a composite image based on the first sub-image and the second sub-image.

    ON CHIP SENSOR FOR WAFER OVERLAY MEASUREMENT

    公开(公告)号:US20240361703A1

    公开(公告)日:2024-10-31

    申请号:US18769032

    申请日:2024-07-10

    CPC classification number: G03F7/70633 G02B6/1225 G02B26/0833

    Abstract: A sensor apparatus includes a sensor chip, an illumination system, a first optical system, a second optical system, and a detector system. The illumination system is coupled to the sensor chip and transmits an illumination beam along an illumination path. The first optical system is coupled to the sensor chip and includes a first integrated optic to configure and transmit the illumination beam toward a diffraction target on a substrate, disposed adjacent to the sensor chip, and generate a signal beam including diffraction order sub-beams generated from the diffraction target. The second optical system is coupled to the sensor chip and includes a second integrated optic to collect and transmit the signal beam from a first side to a second side of the sensor chip. The detector system is configured to measure a characteristic of the diffraction target based on the signal beam transmitted by the second optical system.

    Lithographic apparatus, metrology systems, illumination sources and methods thereof

    公开(公告)号:US12124173B2

    公开(公告)日:2024-10-22

    申请号:US17790344

    申请日:2020-12-08

    CPC classification number: G03F7/70625 G03F7/70141 G03F7/70633

    Abstract: A system includes an illumination system, an optical element, and a detector. The optical system is implemented on a substrate. The illumination system includes first and second sources and first and second generators. The illumination system generates a beam of radiation. The first and second sources generate respective first and second different wavelength bands. The first and second resonators are optically coupled to respective ones of the first and second sources and narrow respective ones of the first and second wavelength bands. The optical element directs the beam toward a target structure. The detector receives radiation from the target structure and to generate a measurement signal based on the received radiation.

    Phase modulators in alignment to decrease mark size

    公开(公告)号:US11803130B2

    公开(公告)日:2023-10-31

    申请号:US17633884

    申请日:2020-08-05

    CPC classification number: G03F9/7049 G03F9/7069 G03F9/7088

    Abstract: An alignment apparatus includes an illumination system configured to direct one or more illumination beams towards an alignment target and receive the diffracted beams from the alignment target. The alignment apparatus also includes a self-referencing Interferometer configured to generate two diffraction sub-beams, wherein the two diffraction sub-beams are orthogonally polarized, rotated 180 degrees with respect to each other around an alignment axis, and spatially overlapped. The alignment apparatus further includes a beam analyzer configured to generate interference between the overlapped components of the diffraction sub-beams and produce two orthogonally polarized optical branches, and a detection system configured to determine a position of the alignment target based on light intensity measurement of the optical branches, wherein the measured light intensity is temporally modulated by a phase modulator.

    Lithographic apparatus, metrology system, and illumination systems with structured illumination

    公开(公告)号:US11789368B2

    公开(公告)日:2023-10-17

    申请号:US17764139

    申请日:2020-09-14

    CPC classification number: G03F7/70191 G03F7/7085 G03F7/70091

    Abstract: A system (500) includes an illumination system (502), a lens element (506), and a detector (504). The illumination system generates a beam of radiation (510) having a first spatial intensity distribution (800) at a pupil plane (528) and a second spatial intensity distribution (900) at a plane of a target (514). The first spatial intensity distribution comprises an annular intensity profile (802) or an intensity profile corresponding to three or more beams. The lens element focuses the beam onto the target. The second spatial intensity distribution is a conjugate of the first intensity distribution and has an intensity profile corresponding to a central beam (902) and one or more side lobes (904) that are substantially isolated from the central beam. The central beam has a beam diameter of approximately 20 microns or less at the target. The detector receives radiation scattered by the target and generates a measurement signal based on the received radiation.

Patent Agency Ranking