摘要:
An improved apparatus for temporary wafer bonding includes a temporary bonder cluster and a debonder cluster. The temporary bonder cluster includes temporary bonder modules that perform electronic wafer bonding processes including adhesive layer bonding, combination of an adhesive layer with a release layer bonding and a combination of a UV-light curable adhesive layer with a laser absorbing release layer bonding. The debonder cluster includes a thermal slide debonder, a mechanical debonder and a radiation debonder.
摘要:
An apparatus for bonding semiconductor structures includes equipment for positioning a first surface of a first semiconductor structure directly opposite and in contact with a first surface of a second semiconductor structure and equipment for forming a bond interface area between the first surfaces of the first and second semiconductor structures by pressing the first and second semiconductor structures together with a force column configured to apply uniform pressure to the entire bond interface area between the first surfaces.
摘要:
A debonder apparatus for debonding two via an adhesive layer temporary bonded wafers includes a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly, and an X-axis drive control. The top chuck assembly includes a heater and a wafer holder. The X-axis drive control drives horizontally the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. A wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer is placed upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly and is carried by the X-axis carriage drive to the process zone under the top chuck assembly and the unbonded surface of the carrier wafer is placed in contact with the top chuck assembly. The X-axis drive control initiates horizontal motion of the X-axis carriage drive along the X-axis while heat is applied to the carrier wafer via the heater and while the carrier wafer is held by the top chuck assembly via the wafer holder and thereby causes the device wafer to separate and slide away from the carrier wafer.
摘要:
A device for centering circular wafers includes a support chuck for supporting a circular wafer to be centered upon its top surface, left, right and middle centering linkage rods and a cam plate synchronizing the rectilinear motion of the left, right and middle centering linkage rods. The left centering linkage rod includes a first rotating arm at a first end and rectilinear motion of the left centering linkage rod translates into rotational motion of the first rotating arm. The right centering linkage rod comprises a second rotating arm at a first end, and rectilinear motion of the right centering linkage rod translates into rotational motion of the second rotating arm. The first and second rotating arms are rotatable around an axis perpendicular to the top surface of the support chuck and comprise a curved edge surface configured to roll against the curved edge of the circular wafer. The middle centering linkage rod includes a third alignment arm at a first end. The third alignment arm is placed in contact with the curved edge of the circular wafer and linear motion of the middle centering linkage rod in the Y-direction pushes the third alignment arm and the circular wafer toward or away from the center of the support chuck. The cam plate includes first and second linear cam profiles. The first cam profile provides rectilinear motion for the middle centering linkage rod and the second linear cam profile provides rectilinear motion for the left and right centering linkage rods.
摘要:
An apparatus for aligning semiconductor wafers includes equipment for positioning a first surface of a first semiconductor wafer directly opposite to a first surface of a second semiconductor wafer and equipment for aligning a first structure on the first semiconductor wafer with a second structure on the first surface of the second semiconductor wafer. The aligning equipment comprises at least one movable alignment device configured to be moved during alignment and to be inserted between the first surface of the first semiconductor wafer and the first surface of the second semiconductor wafer. The positioning equipment are vibrationally and mechanically isolated from the alignment device motion.
摘要:
An improved wafer-to-wafer bonding method includes aligning an upper and a lower wafer and initiating a bond at a single point by applying pressure to a single point of the upper wafer via the flow of pressurized gas through a port terminating at the single point. The bond-front propagates radially across the aligned oppositely oriented wafer surfaces at a set radial velocity rate bringing the two wafer surfaces into full atomic contact by controlling the gas pressure and/or controlling the velocity of the motion of the lower wafer up toward the upper wafer.
摘要:
An apparatus and a method for semiconductor wafer bonding provide in-situ and real time monitoring of semiconductor wafer bonding time. Deflection of the wafer edges during the last phase of the direct bonding process indicates the end of the bonding process. The apparatus utilizes a distance sensor to measure the deflection of the wafer edges and the bonding time is measured as the time between applying the force (bonding initiation) and completion of the bonding process. The bonding time is used as a real-time quality control parameter for the wafer bonding process.
摘要:
An improved wafer carrier device for carrying and holding semiconductor wafers that have a thickness of below 100 micrometers includes a transportable wafer chuck having an enclosed vacuum reservoir and a top surface configured to support a wafer. The top surface has one or more through-openings extending from the top surface to the vacuum reservoir and the wafer is held onto the top surface via vacuum from the vacuum reservoir drawn through the through-openings.
摘要:
A substrate bonding apparatus comprises a platen and a press. The press is movable relative to the platen for pressing at least one substrate stack between the press and platen. In one embodiment, a consumable compliant member is disposed between the press and the platen. In another embodiment, the apparatus further comprises a substrate carrier adapted for holding and carrying more than one substrate stack in and out of the apparatus. A method for bonding substrates is also described.
摘要:
An improved apparatus for debonding temporary bonded wafers includes a debonder, a cleaning module and a taping module. A vacuum chuck is used in the debonder for holding the debonded thinned wafer and remains with the thinned debonded wafer during the follow up processes steps of cleaning and mounting onto a dicing tape. In one embodiment the debonded thinned wafer remains onto the vacuum chuck and is moved with the vacuum chuck into the cleaning module and then the taping module. In another embodiment the debonded thinned wafer remains onto the vacuum chuck and first the cleaning module moves over the thinned wafer to clean the wafer and then the taping module moves over the thinned wafer to mount a dicing tape onto the wafer.